[1] 孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(S1):1744-1748. [2] ROSSI L,WALKER J,MUSOLESI M.Spatio-temporal techniques for user identification by means of GPS mobility data[J].EPJ Data Science,2015,4:11. [3] 黄文彬,徐山川,吴家辉,等.移动用户画像构建研究[J].现代情报,2016,36(10):54-61. [4] GONZÁLEZ M C,HIDALGO C A,BARABÁSI A L.Understanding individual human mobility patterns[J].Nature,2008,453(7196):779-782. [5] DE MONTJOYE Y A,HIDALGO C A,VERLEYSEN M,et al.Unique in the crowd:the privacy bounds of human mobility[J].Scientific Reports,2013,3:1376. [6] ZANG Hui,BOLOT J.Anonymization of location data does not work:a large-scale measurement study[C]//Proceedings of the 17th annual international conference on Mobile computing and networking.Las Vegas:ACM,2011. [7] CAO Wei,WU Zhengwei,WANG Dong,et al.Automatic user identification method across heterogeneous mobility data sources[C]//Proceedings of 2016 IEEE International Conference on Data Engineering.Helsinki:IEEE,2016:978-989. [8] HAO Tianyi,ZHOU Jingbo,CHENG Yunsheng,et al.User identification in cyber-physical space:a case study on mobile query logs and trajectories[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York:ACM,2016. [9] HAN Xiaohui,WANG Lianhai,XU Shujiang,et al.Linking social network accounts by modeling user spatiotemporal habits[C]//Proceedings of the IEEE International Conference on Intelligence and Security Informatics.Beijing:IEEE,2017:19-24. [10] 陈鸿昶,徐乾,黄瑞阳,等.一种基于用户轨迹的跨社交网络用户身份识别算法[J].电子与信息学报,2018,40(11):2758-2764. [11] RIEDERER C,KIM Y,CHAINTREAU A,et al.Linking users across domains with location data:theory and validation[C]//Proceedings of the 25th International Conference on World Wide Web.Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee,2016. [12] SHAHID F,ZAMEER A,MUNEEB M.Predictions for COVID-19 with deep learning models of LSTM,GRU and Bi-LSTM[J].Chaos,Solitons&Fractals,2020,140:110212. [13] ROY A.Forecasting COVID-19 transmission in India using deep learning models[J].Letters in Applied NanoBioScience,2020,10(2):2044-2055. [14] NABI K N,TAHMID M T,RAFI A,et al.Forecasting COVID-19 cases:a comparative analysis between recurrent and convolutional neural networks[J].Results in Physics,2021,24:104137. [15] KARATZOGLOU A,SCHNELL N,BEIGL M.A convolutional neural network approach for modeling semantic trajectories and predicting future locations[C]//Proceedings of 2018 Artificial Neural Networks and Machine Learning-ICANN.Cham:Springer International Publishing,2018. [16] 张宇,吴升,赵志远,等.顾及相似用户特征的个人位置预测算法[J/OL].武汉大学学报(信息科学版):1-19.2021-05-07[2021-05-12].http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20200609. [17] 李帆,夏吉喆,黄赵,等.顾及停留位置特征提取的个人位置预测方法[J].武汉大学学报(信息科学版),2020,45(12):1970-1980. [18] 周于涛,吴华意,成洪权,等.结合自注意力机制和结伴行为特征的行人轨迹预测模型[J].武汉大学学报(信息科学版),2020,45(12):1989-1996. [19] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [20] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [21] CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].(2014-09-03)[2021-05-12].https://arxiv.org/abs/1406.1078. [22] QI Mengjun,WANG Zhongyuan,HE Zheng,et al.User identification across asynchronous mobility trajectories[J].Sensors (Basel,Switzerland),2019,19(9):2102. |