[1] 吴绿川, 王剑辉, 符彦. 基于InSAR技术和光学遥感的贵州省滑坡早期识别与监测[J]. 测绘通报, 2021(7):98-102. [2] 李媛茜, 张毅, 苏晓军, 等. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报, 2021, 25(2):677-690. [3] 赵福军, 樊雅婧. 深度卷积神经网络的遥感影像滑坡灾害识别[J]. 黑龙江科技大学学报, 2020, 30(5):556-561. [4] 巨袁臻, 许强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11):1747-1755. [5] 黄坚, 李鑫, 陈芳, 等. 一种基于多源数据融合的滑坡地形深度学习识别模型研究[J]. 中国地质灾害与防治学报, 2022, 33(2):33-41. [6] 彭燕, 胡丹屏, 刘宇红, 等. 基于FPGA实现的Ferguson双三次曲面插值图像缩放算法[J]. 贵州大学学报(自然科学版), 2019, 36(6):68-72, 118. [7] 陈光盛,李树涛. MAP和POCS算法实现超分辨率图像的重建[J]. 科学技术与工程,2006,6(4):396-399. [8] 李现国,冯欣欣,李建雄. 多尺度残差网络的单幅图像超分辨率重建[J]. 计算机工程与应用,2021,57(7):215-221. [9] 徐永兵,袁东,余大兵,等. 多注意力机制引导的双目图像超分辨率重建算法[J]. 电子测量技术,2021,44(15):103-108. [10] 贺温磊,王朝立,孙占全. 基于生成对抗网络的遥感图像超分辨率重建[J]. 信息与控制,2021,50(2):195-203. [11] 闵锐,杨学志,董张玉,等. 结构增强型生成对抗网络SAR图像超分辨率重建[J]. 地理与地理信息科学,2021,37(2):47-53. [12] 黄丹阳,田传印. 基于生成对抗网络的激光雷达超分辨率[J]. 电子元器件与信息技术,2021,5(12):88-89,93. [13] 韩志晟,孙丕川,唐超. 面向单幅遥感图像的生成对抗网络超分辨率重建[J]. 测绘通报,2021(8):106-110. [14] 马天浩. 基于循环生成对抗网络的遥感影像超分辨率重建研究[D]. 阜新:辽宁工程技术大学,2021. [15] WANG XINTAO,YU KE,WU SHIXIANG,et al. ESRGAN:enhanced super-resolution generative adversarial networks[EB/OL].[2022-03-20]. https://arxiv.org/abs/1809.00219. [16] LEDIG C,THEIS L,HUSZÁR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI:IEEE,2017:105-114. [17] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu,HI:IEEE,2017:1132-1140. [18] ZHANG Yulun,TIAN Yapeng,KONG Yu,et al. Residual dense network for image super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT:IEEE,2018:2472-2481. [19] SZEGEDY C,IOFFE S,VANHOUSKE V,et al. Inception-V4,Inception-Res Net and the impact of residual connections on learning[EB/OL].(2019-11-25)[2022-04-11].https://arxiv.org/abs/1602.07261. [20] ALEXIA J M. The relativistic discriminator:A key element missing from standard GAN[EB/OL].(2018-09-10)[2022-04-11].https://arxiv.org/abs/1807.00734. [21] AGUSTSSON E,TIMOFTE R. NTIRE 2017 challenge on single image super-resolution:dataset and study[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu,HI:IEEE,2017:1122-1131. [22] WANG Xintao,YU Ke,DONG Chao,et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT:IEEE,2018:606-615. [23] 曾超,曹振宇,苏凤环,等.四川及周边滑坡泥石流灾害高精度航空影像及解译数据集[DB/OL].(2021-02-08)[2022-04-11].http://www.csdata.org/p/555. [24] JI Shunping,YU Dawen,SHEN Chaoyong,et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J].Landslides,2020,17(6):1337-1352. |