[1] ZHANG Z, KAZAKOVA A, MOSKAL L, et al. Object-based tree species classification in urban ecosystems using LiDAR and hyperspectral data[J].Forests, 2016, 7(6):122. [2] WASER L T, GINZLER C, KUECHLER M, et al. Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from airborne digital sensor (ADS40) and RC30 data[J].Remote Sensing of Environment, 2011, 115(1):76-85. [3] 任冲, 鞠洪波, 张怀清,等. 多源数据林地类型的精细分类方法[J]. 林业科学, 2016, 52(6):54-65. [4] LOUARN M L, CLERGEAU P, BRICHE E, et al. "Kill two birds with one stone":urban tree species classification using bi-temporal Pléiades images to study nesting preferences of an invasive bird[J]. Remote Sensing, 2017, 9(9):916. [5] 王妮, 彭世揆, 李明诗. 基于树种分类的高分辨率遥感数据纹理特征分析[J]. 浙江农林大学学报, 2012, 29(2):210-217. [6] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. [7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [8] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018,47(6):693-704. [9] ZHANG F, DU B, ZHANG L. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1793-1802. [10] HUAN Y U, ZHANG S Q, KONG B, et al. Optimal segmentation scale selection for object-oriented remote sensing image classification[J]. Journal of Image and Graphics, 2010, 15(2):352-360. [11] 孙坤, 鲁铁定. 顾及多尺度分割参数的FNEA面向对象分类[J]. 测绘通报, 2018(3):43-48. [12] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2009:248-255. [13] LIN M, CHEN Q, YAN S.Network in network[C]//International Conference on Learning Representations (ICLR).[S.l.]:Cornell University, 2014. [14] KINGMA D, BA J.ADAM:a method for stochastic optimization[C]//International Conference on Learning Representations (ICLR).[S.l.]:Cornell University, 2015. [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//arXiv preprint arXiv.[S.l.]:University of Oxford, 2014. |