测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 27-31.doi: 10.13474/j.cnki.11-2246.2023.0131

• 滑坡监测与分析 • 上一篇    下一篇

基于鸟群优化BP神经网络的滑坡处治后变形预测

曹小燕1, 满新耀1, 汪继平1, 麦荣章1, 郭云开2   

  1. 1. 广西交通投资集团有限公司, 广西 梧州 543000;
    2. 长沙理工大学测绘遥感应用技术研究所, 湖南 长沙 410076
  • 收稿日期:2022-07-11 发布日期:2023-05-31
  • 作者简介:曹小燕(1988-),女,硕士,工程师,主要从事测绘技术应用和高速公路运营管理工作。E-mail:992935246@qq.com
  • 基金资助:
    国家自然科学基金面上项目(41671498)

Deformation prediction of treated landslides based on BP neural network optimized by bird swarm algorithm

CAO Xiaoyan1, MAN Xinyao1, WANG Jiping1, MAI Rongzhang1, GUO Yunkai2   

  1. 1. Guangxi Communication Investment Group Corporation Ltd., Wuzhou 543000, China;
    2. Institute of Surveying and Mapping and Remote Sensing Applied Technology, Changsha University of Science &Technology, Changsha 410076, China
  • Received:2022-07-11 Published:2023-05-31

摘要: 滑坡变形程度是判断处治后滑坡是否稳定的关键评价指标,开展处治后滑坡变形预测可提前掌握滑坡稳定性情况,有利于滑坡失稳风险分析,便于开展地质灾害防灾减灾工作。为了准确预测处治后滑坡变形情况,本文提出了一种采用鸟群算法(BSA)优化BP神经网络的滑坡变形预测方法,借助BSA-BP神经网络构建了广西某高速公路滑坡变形预测模型,对比分析了BSA-BP神经网络与BP神经网络的预测结果。结果表明,BSA-BP神经网络预测结果的均方误差和相关系数分别为0.053 4和0.997 6,BP神经网络预测结果的均方误差和相关系数分别为2.225 6和0.968,鸟群算法可有效提高BP神经网络模型的预测精度,能有效应用于处治后滑坡变形预测,研究结果可为处治后滑坡失稳风险预测提供参考。

关键词: 滑坡, BSA-BP神经网络, 鸟群算法, 变形预测

Abstract: Landslide deformation is a key evaluation parameter for judging whether the landslide is stable after treatment. Carrying out the deformation prediction of landslide can grasp the stability of the landslide, which is beneficial to the risk analysis of landslide and facilitates the prevention and control of geological disasters. To accurately predict the deformation of the treated landslide, this paper proposes a deformation predicting method of the treated landslide by using the Bird Swarm Algorithm (BSA) to optimize the BP neural network. The deformation prediction model of highway slope in Guangxi Province is established with BSA-BP neural network, and the prediction results of BSA-BP neural network and normal BP neural network are compared and analyzed. It is indicated that the mean square error and correlation coefficient of the prediction results of the BSA-BP neural network are 0.053 4 and 0.997 6, respectively. The mean square error and correlation coefficient to prediction results are 2.225 6 and 0.968 with BP neural network. Bird Swarm Algorithm can effectively improve the prediction accuracy of the BP neural network model. The BSA-BP neural network model can be effectively applied to the deformation prediction of the treated landslide. The research results could provide a reference for risk prediction of the treated landslide in the future.

Key words: landslide, BSA-BP neural network, bird swarm algorithm, deformation prediction

中图分类号: