测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 27-31.doi: 10.13474/j.cnki.11-2246.2023.0131
曹小燕1, 满新耀1, 汪继平1, 麦荣章1, 郭云开2
CAO Xiaoyan1, MAN Xinyao1, WANG Jiping1, MAI Rongzhang1, GUO Yunkai2
摘要: 滑坡变形程度是判断处治后滑坡是否稳定的关键评价指标,开展处治后滑坡变形预测可提前掌握滑坡稳定性情况,有利于滑坡失稳风险分析,便于开展地质灾害防灾减灾工作。为了准确预测处治后滑坡变形情况,本文提出了一种采用鸟群算法(BSA)优化BP神经网络的滑坡变形预测方法,借助BSA-BP神经网络构建了广西某高速公路滑坡变形预测模型,对比分析了BSA-BP神经网络与BP神经网络的预测结果。结果表明,BSA-BP神经网络预测结果的均方误差和相关系数分别为0.053 4和0.997 6,BP神经网络预测结果的均方误差和相关系数分别为2.225 6和0.968,鸟群算法可有效提高BP神经网络模型的预测精度,能有效应用于处治后滑坡变形预测,研究结果可为处治后滑坡失稳风险预测提供参考。
中图分类号: