测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 18-22.doi: 10.13474/j.cnki.11-2246.2023.0321

• 学术研究 • 上一篇    下一篇

基于多层次分割的月表撞击坑自动检测

李海鹏, 董有福, 张昊   

  1. 南京工业大学, 江苏 南京 211816
  • 收稿日期:2023-03-14 发布日期:2023-12-07
  • 通讯作者: 董有福。E-mail:dyf@njtech.edu.cn
  • 作者简介:李海鹏(1998—),男,硕士生,主要研究方向为遥感图像解译、行星遥感。E-mail:haipengli@zohomail.cn
  • 基金资助:
    国家自然科学基金(41871324)

Lunar impact crater detection based on multilevel segmentation

LI Haipeng, DONG Youfu, ZHANG Hao   

  1. Nanjing Tech University, Nanjing 211816, China
  • Received:2023-03-14 Published:2023-12-07

摘要: 对月表不同尺寸撞击坑的提取具有重要研究价值。目前针对直径1 km以下的撞击坑检测取得了理想的效果,但对于相对较大的撞击坑检测率有待进一步提升。本文提出了一种具有良好稳健性的撞击坑自动检测模型,基于LOLA发布的全月DEM数据生成了月表地形参数,采用面向对象的多层次分割方法并结合机器学习技术提取撞击坑,选取3个典型样区进行了试验分析。结果表明,对于直径范围在1~120 km内的撞击坑,召回率和精确率分别为86.5%和81.2%,具有良好的检测率。

关键词: 撞击坑, 自动检测, 面向对象, 多层次分割

Abstract: The extraction of craters of different sizes on the lunar surface is of great value. Currently, crater detection algorithmsare effective for craters less than one kilometer, but the detection rate of largercraters needs to be improved. We propose an automatic crater detection model with good robustness.Firstly, we generate the terrain parameters based on the who lelunar DEM published by LOLA, then detect craters by object-oriented multilevel sesgmentation combined with machine learning.Three typical regions are selected for experiment and analysis, the recall and accuracy rates for craters between 1~120 km in diameter are 86.5% and 81.2% respectively, with a good detection rate.

Key words: impact crater, automatic detection, object-orientation, multilevel segmentation

中图分类号: