测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 1-7.doi: 10.13474/j.cnki.11-2246.2023.0350
• 道路与智能交通驾驶 • 下一篇
朱文杰1, 李宏伟2, 姜懿芮1, 程相龙1, 赵珊2
收稿日期:
2023-05-30
发布日期:
2024-01-08
通讯作者:
李宏伟。E-mail:laob_811@sina.com
作者简介:
朱文杰(1998-),男,硕士生,主要研究方向为语义分割及相关应用。E-mail:zwj1998@gs.zzu.edu.cn
基金资助:
ZHU Wenjie1, LI Hongwei2, JIANG Yirui1, CHENG Xianglong1, ZHAO Shan2
Received:
2023-05-30
Published:
2024-01-08
摘要: 为应对自动驾驶在复杂道路环境下的挑战,提出了多项任务合作的需求。在自然语言处理及推荐算法领域,利用多任务学习网络已被证明可以减少多种任务耦合情况下的时间、算力及存储使用。由于多任务学习网络的这种特点,近年来也开始应用于基于视觉的道路特征提取方面。本文提出了一种结合FPN网络的解码器头结构,并将其应用于基于YOLOv4网络的多任务学习道路特征提取网络;通过研究多任务权重设置的影响对多任务网络算法进行优化,并在同类算法中验证了权重设置的有效性。在BDD-100K数据集上进行的试验结果表明,本文结构在保证实时性的同时精度也优于同类方法,本文方法为基于视觉的自动驾驶过程中车辆的自主道路感知及高精地图的生成提供了新思路与新方法。
中图分类号:
朱文杰, 李宏伟, 姜懿芮, 程相龙, 赵珊. 改进的多任务道路特征提取网络及权重优化[J]. 测绘通报, 2023, 0(12): 1-7.
ZHU Wenjie, LI Hongwei, JIANG Yirui, CHENG Xianglong, ZHAO Shan. Improved multi-task road feature extraction network and weight optimization[J]. Bulletin of Surveying and Mapping, 2023, 0(12): 1-7.
[1] GARG S,SÜNDERHAUF N,DAYOUB F,et al. Semantics for robotic mapping,perception and interaction: a survey[EB/OL]. 2021-03-05[2023-01-11]. https://arxiv.org/abs/2101.00443.pdf. [2] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE 2014: 580-587. [3] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision(ICCV). Santiago,Chile:IEEE,2015: 1440-1448. [4] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once: unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Vegas:IEEE,2016: 779-788. [5] REDMON J,FARHADI A. YOLO9000: better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu:IEEE,2017: 7263-7271. [6] FARHADI A,REDMON J. Yolov3: an incremental improvement[C]//Proceedings of 2018 Computer Vision and Pattern Recognition. Berlin/Heidelberg: Springer,2018. [7] BOCHKOVSKIY A,WANG C Y,LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. 2020-08-23[2023-01-12]. https://arxiv.org/abs/2004.10934. [8] RONNEBERGER O,FISCHER P,BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI. Munich: Springer International Publishing,2015: 234-241. [9] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[EB/OL]. 2016-12-05[2023-01-11]. https://ui.adsabs.harvard.edu/abs/2016arXiv161203144L/abstract. [10] ZHENG Tu,FANG Hao,ZHANG Yi,et al. RESA: recurrent feature-shift aggregator for lane detection[EB/OL]. 2016-12-05[2023-01-11]. https://arxiv.org/abs/2101.00443.pdf. [11] PAN X,SHI J,LUO P,et al. Spatial as deep: Spatial CNN for traffic scene understanding[C]//Proceedings of 2018 AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2018. [12] NEVEN D,DE BRABANDERE B,GEORGOULIS S,et al. Towards end-to-end lane detection: an instance segmentation approach [C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE,2018. [13] CARUANA R. Multitask learning: a knowledge-based source of inductive bias1[C]//Proceedings of the 10th International Conference on Machine Learning. Amherst:[s.n.],1993: 41-48. [14] MA J,ZHAO Z,YI X,et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. [S.l.]:ACM Press,2018: 1930-1939. [15] QIN Z,CHENG Y,ZHAO Z,et al. Multitask mixture of sequential experts for user activity streams[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. [S.l.]:ACM Press,2020: 3083-3091. [16] ZHAO Z,HONG L,WEI L,et al. Recommending what video to watch next: a multitask ranking system[C]//Proceedings of the 13th ACM Conference on Recommender Systems[S.l.]:ACM Press,2019: 43-51. [17] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [18] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Vegas:IEEE,2016: 770-778. [19] DUAN K,XIE L,QI H,et al. Location-sensitive visual recognition with cross-iou loss[EB/OL]. 2021-04-05[2023-01-11]. https://arxiv.org/abs/2101.00443.pdf. [20] TEICHMANN M,WEBER M,ZOELLNER M,et al. MultiNet: real-time joint semantic reasoning for autonomous driving[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE,2018: 1013-1020. [21] WUD,LIAO M W,ZHANG W T,et al. Yolop: You only look once for panoptic driving perception[J]. Machine Intelligence Research,2022(6): 550-562. [22] VU D,NGO B,PHAN H. Hybridnets: end-to-end perception network[EB/OL]. 2016-12-05[2023-01-11]. https://doi.org/10.48550/arXiv.2203.09035. [23] YU F,CHEN H,WANG X,et al. Bdd100k: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE,2020: 2636-2645. [24] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9): 1904-1916. [25] ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE conference on computer vision and pattern recognition. Honolulu:IEEE,2017: 2881-2890. |
[1] | 刘晋, 杨容浩, 文文, 谭骏祥, 兰青龙, 高祥, 汤洪. 一种车载LiDAR点云道路提取深度神经网络模型[J]. 测绘通报, 2023, 0(12): 8-12,18. |
[2] | 何光明, 韩士元, 陈月辉, 周劲, 杨君. 基于车载LiDAR的特征融合差分的车前道路提取方法[J]. 测绘通报, 2023, 0(12): 13-18. |
[3] | 鲁维佳, 刘泽帅, 潘玉恒, 李国燕, 李慧洁, 丛佳. 基于循环特征融合的弯道增强车道线检测算法[J]. 测绘通报, 2023, 0(12): 25-30. |
[4] | 段玉, 刘善伟, 万剑华, MUHAMMAD Yasir, 郑爽. 多尺度融合卷积神经网络支持下的SAR影像变化检测[J]. 测绘通报, 2023, 0(12): 31-37. |
[5] | 刘耀辉, 刘文毅, 仇培元, 邢华桥, 刘雨敏, 王琪, 邢笑天. 基于夜间灯光数据的东部七省市碳排放时空演变和监测评估[J]. 测绘通报, 2023, 0(12): 38-44. |
[6] | 武锦沙, 杨树文, 李轶鲲, 赵志威, 郑耀, 付昱凯. 面向异源影像的FCM-SBN-CVAPS多尺度变化检测方法[J]. 测绘通报, 2023, 0(12): 45-50. |
[7] | 胡祥祥, 明璐璐, 吴涛, 刘宝康, 庞栋栋, 尹继鑫, 宋宝, 柯福阳. 融合InSAR与信息量-层次分析耦合模型的西宁市地质灾害易发性评价[J]. 测绘通报, 2023, 0(12): 51-56,75. |
[8] | 吴贞江, 张佳华. 基于激光雷达卫星(GEDI)的广东省森林冠层高度和生物量估算[J]. 测绘通报, 2023, 0(12): 102-105. |
[9] | 罗振威, 李骁, 刘承承, 张勇. 利用倾斜摄影与激光扫描技术构建城市级实景三维模型[J]. 测绘通报, 2023, 0(12): 116-120. |
[10] | 华安中, 孙灏. 大规模中心城区精细化建模及可视化研究[J]. 测绘通报, 2023, 0(12): 121-126. |
[11] | 袁媛. 基于珠海一号高光谱影像的大同煤田区碳汇变化[J]. 测绘通报, 2023, 0(12): 127-131. |
[12] | 刘燕君, 刘凯, 曹晶晶. 结合珠海一号高光谱影像和XGBoost算法的珠江口滨海湿地分类[J]. 测绘通报, 2023, 0(12): 136-141. |
[13] | 刘丽, 魏海霞, 祖为国, 谭金石. 无人机倾斜摄影测量技术在可建设城市屋顶光伏资源调查中的应用[J]. 测绘通报, 2023, 0(12): 142-146. |
[14] | 周长江, 张晨辉. 新型测绘技术在城市部件普查中的应用[J]. 测绘通报, 2023, 0(12): 147-152. |
[15] | 徐海燕, 郭为人, 李德民, 郝君, 徐刚. 实景三维模型纹理的敏感目标自动识别与脱密方法[J]. 测绘通报, 2023, 0(12): 153-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||