测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 8-12,18.doi: 10.13474/j.cnki.11-2246.2023.0351

• 道路与智能交通驾驶 • 上一篇    

一种车载LiDAR点云道路提取深度神经网络模型

刘晋1, 杨容浩1, 文文1, 谭骏祥1, 兰青龙1, 高祥1, 汤洪2   

  1. 1. 成都理工大学地球科学学院测绘工程系, 四川 成都 610059;
    2. 广州南方测绘科技股份有限公司成都分公司, 四川 成都 610031
  • 收稿日期:2023-06-01 发布日期:2024-01-08
  • 通讯作者: 杨容浩。E-mail:yangronghao@cdut.edu.cn
  • 作者简介:刘晋(1998-),男,硕士生,研究方向为点云语义分割、点云处理方法及应用。E-mail:ljlo1550830301@163.com
  • 基金资助:
    四川省科技计划(2021YJ0369)

A deep neural network model for road extraction of MLS LiDAR point cloud

LIU Jin1, YANG Ronghao1, WEN Wen1, TAN Junxiang1, LAN Qinglong1, GAO Xiang1, TANG Hong2   

  1. 1. Department of Surveying & Mapping, College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
    2. Chengdu Branch of South Surveying & Mapping Technology Co., Ltd., Chengdu 610031, China
  • Received:2023-06-01 Published:2024-01-08

摘要: PointNet++在车载LiDAR点云道路提取中表现出优于传统方法的性能,但对于道路边缘的提取仍存在过分割或欠分割的现象。针对该问题,本文提出了一种改进的邻域增强编码网络——E-PointNet++,通过在特征提取前引入一个邻域增强编码模块,建立局部邻域内点与点之间的联系,以提高网络的道路边缘分割能力。在两个数据集上进行对比试验,E-PointNet++表现出明显优于其他方法的性能,准确性、完整性和检测质量均高于97%。该方法对于不同数据集和场景表现稳健。

关键词: 车载LiDAR点云, 深度学习, 道路提取, 边缘分割, 邻域增强编码

Abstract: PointNet++ has shown better performance than traditional methods in MLS LiDAR point cloud road extraction, but there are still the phenomena of over segmentation or under segmentation for road edge extraction.To address this issue, an improved neighborhood enhancement coding network E-PointNet++ is proposed. By introducing a neighborhood enhancement coding module before feature extraction, the connection between local neighborhood points is established to improve the network's road edge segmentation ability.Comparative experiments are conducted on two datasets, and E-PointNet++ shows significantly better performance than other methods, with accuracy, integrity and detection quality all exceeding 97%. This method performs robustly on different datasets and scenarios.

Key words: MLS LiDAR point cloud, deep learning, road extraction, edge segmentation, neighborhood enhanced coding

中图分类号: