测绘通报 ›› 2024, Vol. 0 ›› Issue (11): 44-48.doi: 10.13474/j.cnki.11-2246.2024.1108

• 学术研究 • 上一篇    

结合DS-InSAR和LSTM的矿区地面沉降监测与预测

王本浩1, 王延霞2, 项学泳2, 胡洪1   

  1. 1. 安徽大学资源与环境工程学院, 安徽 合肥 230000;
    2. 滁州学院地理信息与旅游学院, 安徽 滁州 239000
  • 收稿日期:2024-03-22 发布日期:2024-12-05
  • 通讯作者: 王延霞,E-mail:surveymapping@126.com
  • 作者简介:王本浩(2000-),男,硕士生,主要研究方向为InSAR技术及应用。E-mail:wbh12581@126.com
  • 基金资助:
    滁州市科技计划(2021ZD009);2021年度高校自然科学研究重点项目(KJ2021A1084;KJ2021A1077);国家自然科学基金青年项目(42304095)

Monitoring and prediction of ground subsidence in mining areas using DS-InSAR and LSTM

WANG Benhao1, WANG Yanxia2, XIANG Xueyong2, HU Hong1   

  1. 1. School of Resources and Environmental Engineering, Anhui University, Hefei 230000, China;
    2. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
  • Received:2024-03-22 Published:2024-12-05

摘要: 针对常规InSAR技术在矿区沉降监测中点密度较低且分布不均匀的问题,本文利用2020年8月至2023年8月的36景Sentinel-1A影像数据,采用DS-InSAR技术获取了安徽省滁州市琅琊山矿区的地表形变信息;利用LSTM神经网络模型对该矿区地面沉降严重区域未来沉降趋势进行了预测,了解矿区地表沉降未来发展趋势。研究结果表明:①DS-InSAR技术相较于传统的PS-InSAR技术,能够显著增加矿区监测点的数量,更全面地反映矿区地表沉降信息;②监测时段内,矿区共存在3处形变区,最大沉降量达32.4 mm,最大沉降速率为10.8 mm/a;③利用选取的6个沉降特征点,通过与GM(1,1)模型对比发现,LSTM神经网络模型展现出更高的预测精度;④针对累计沉降量最大的区域,采用LSTM模型对该区域内的6个特征点未来12个月的累计沉降量进行预测,结果显示,该区域的未来沉降量在一定范围内波动,暂未观察到明显的沉降趋势。

关键词: 矿区沉降, DS-InSAR, 预测模型, LSTM神经网络

Abstract: In response to the problem of low point density and uneven distribution in subsidence monitoring of mining areas using conventional InSAR technology, this paper uses 36 Sentinel-1A image data from August 2020 to August 2023 to obtain surface deformation information of Langyashan mining area in Chuzhou city, Anhui province using DS-InSAR technology. And the LSTM neural network model is used to predict the future settlement trend of the area with severe ground subsidence in the mining area, in order to understand the future development trend of ground subsidence in the mining area. The research results indicate that:①Compared with traditional PS-InSAR technology, DS-InSAR technology can significantly increase the number of monitoring points in mining areas and more comprehensively reflect surface subsidence information in mining areas. ②During the monitoring period, there are three deformation zones in the mining area, with a maximum settlement of 32.4 mm and a maximum settlement rate of 10.8 mm/a. ③By comparing with the GM (1,1) model and using the selected 6 settlement feature points, it is found that the LSTM neural network model exhibited higher prediction accuracy. ④For the area with the highest cumulative settlement, we use the LSTM model to predict the cumulative settlement of the 6 feature points in the area for the next 12 months. The prediction results show that the future settlement in the area fluctuates within a certain range, and no obvious settlement trend has been observed yet.

Key words: mining subsidence, DS-InSAR, prediction model, LSTM neural network

中图分类号: