测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 33-39.doi: 10.13474/j.cnki.11-2246.2024.1206

• 学术研究 • 上一篇    下一篇

小波GRU-ARMA优化的InSAR监测沉降预测方法

马志刚1,2,3, 杨国林1,2,3, 刘涛1,2,3, 魏小强1,2,3, 石守军1,2,3, 陈皓轩1,2,3   

  1. 1. 兰州交通大学测绘与地理信息学院, 甘肃 兰州 730070;
    2. 地理国情监测技术应用国家地方联合工程研究中心, 甘肃 兰州 730070;
    3. 甘肃省地理国情监测工程实验室, 甘肃 兰州 730070
  • 收稿日期:2024-03-19 发布日期:2024-12-27
  • 通讯作者: 杨国林,E-mail:gl_yang@sina.com E-mail:gl_yang@sina.com
  • 作者简介:马志刚(1998-),男,硕士生,主要研究方向为基于深度学习的地表沉降预测模型。E-mail:1464522997@qq.com
  • 基金资助:
    国家自然科学基金(41764001;42261076);兰州交通大学“兰州交通大学优秀平台支持”(201806);兰州交通大学天佑创新团队项目(TY202001)

Wavelet-optimized InSAR monitoring subsidence prediction method using GRU-ARMA

MA Zhigang1,2,3, YANG Guolin1,2,3, LIU Tao1,2,3, WEI Xiaoqiang1,2,3, SHI Shoujun1,2,3, CHEN Haoxuan1,2,3   

  1. 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Nation-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China;
    3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
  • Received:2024-03-19 Published:2024-12-27

摘要: 本文在长短时记忆神经网络-自回归滑动平均模型(LSTM-ARMA)的基础上,提出了基于小波门控循环神经网络-自回归滑动平均模型(GRU-ARMA)优化算法。首先使用小波降噪将InSAR原始时间序列分解成趋势项和噪声项,采用GRU循环神经网络滚动预测趋势项、ARMA模型预测噪声项;然后将趋势项和噪声项的预测值之和作为总的时间序列预测值,其优点为提高了各监测点的预测精度;最后选取阿干矿区2020—2023年最严重沉降区域的多个点(CP0001、CP0007和CP0009)为例进行了研究。试验结果表明,基于小波优化组合模型的预测精度高于传统单一模型GRU/LSTM的预测精度;相较于LSTM-ARMA模型,小波GRU-ARMA优化模型的预测效果更稳定,是一种地表沉降预测的有效思路和方法。

关键词: SBAS-InSAR, 小波GRU-ARMA优化模型, 地表沉降预测, 逐点预测, 面域预测

Abstract: This article proposes an optimization algorithm based on the wavelet gated recurrent neural network autoregressive moving average model(GRU-ARMA)on the basis of the long short term memory neural network autoregressive moving average model(LSTM-ARMA).Firstly,it decomposes the original InSAR time series into trend and noise components using wavelet denoising,employs the GRU recurrent neural network for rolling prediction of the trend component,and utilizes the ARMA model for forecasting the noise component.Subsequently,the sum of the predicted values of the trend and noise components is used as the total time series prediction value,thereby enhancing the prediction accuracy at each monitoring point.Finally, this paper selects multiple points(CP0001,CP0007,and CP0009)in the most severe subsidence area of the Argan mining area from 2020 to 2023 as examples for study.It demonstrates that the prediction accuracy of the wavelet-optimized combination model surpasses that of the traditional single models GRU/LSTM.Furthermore,compared to the LSTM-ARMA model,the predictive performance of the wavelet-optimized GRU-ARMA model is more stable,indicating it as an effective approach and method for surface subsidence prediction.

Key words: SBAS-InSAR, wavelet-optimized GRU-ARMA model, surface subsidence prediction, point-by-point prediction, area-wide prediction

中图分类号: