[1] SUN Xian,WANG Bing,WANG Zhirui,et al. Research progress on few-shot learning for remote sensing image interpretation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14: 2387-2402. [2] 张中方,李金屏,拜佩.基于多颜色空间融合的移动目标检测算法[J].济南大学学报(自然科学版),2011,25(2):191-195. [3] LIN Haoning,SHI Zhenwei,ZOU Zhengxia.Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J].IEEE Geoscience and Remote Sensing Letters,2017,14(10): 1665-1669. [4] 李庆武,朱国庆,周妍,等.基于特征在线选择的目标压缩跟踪算法[J].自动化学报,2015,41(11):1961-1970. [5] ZHANG Lei,WU Xiaolin.An edge-guided image interpolation algorithm via directional filtering and data fusion[J].IEEE Transactions on Image Processing,2006,15(8): 2226-2238. [6] ZHANG Kaibing,GAO Xinbo,TAO Dacheng,et al.Single image super-resolution with non-local means and steering kernel regression[J].IEEE Transactions on Image Processing,2012,21(11): 4544-4556. [7] ZHANG Kai,ZUO Wangmeng,ZHANG Lei.Learning a single convolutional super-resolution network for multiple degradations[C]//Praceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT:IEEE,2018:3262-3271. [8] DONG Chao,LOY C C,HE Kaiming,et al.Learning a deep convolutional network for image super-resolution[M]//Lecture Notes in Computer Science.Cham: Springer International Publishing,2014: 184-199. [9] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu,HI:IEEE,2017: 136-144. [10] YEO Y J,SAGONG M C,SHIN Y G,et al.Simple yet effective way for improving the performance of depth map super-resolution[J].IEEE Signal Processing Letters,2020,27: 2099-2103. [11] HUANG Junjie,DRAGOTTI P L.Learning deep analysis dictionaries for image super-resolution[J].IEEE Transactions on Signal Processing,2020,68: 6633-6648. [12] HUANG Liqin,ZHANG Jianjia,ZUO Yifan,et al.Pyramid-structured depth MAP super-resolution based on deep dense-residual network[J].IEEE Signal Processing Letters,2019,26(12): 1723-1727. [13] HU Jie,SHEN Li,SUN Gang.Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT: IEEE,2018: 7132-7141. [14] WOO S,PARK J,LEE J Y,et al.CBAM: convolutional block attention module[M]//Lecture Notes in Computer Science.Cham: Springer International Publishing,2018: 3-19. [15] DAI Tao,CAI Jianrui,ZHANG Yongbing,et al.Second-order attention network for single image super-resolution[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,CA:IEEE,2019:11065-11074. [16] LEI Sen,SHI Zhenwei,ZOU Zhengxia.Super-resolution for remote sensing images via local-global combined network[J].IEEE Geoscience and Remote Sensing Letters,2017,14(8): 1243-1247. [17] HAUT J M,PAOLETTI M E,FERNANDEZ-BELTRAN R,et al.Remote sensing single-image superresolution based on a deep compendium model[J].IEEE Geoscience and Remote Sensing Letters,2019,16(9): 1432-1436. [18] AGUSTSSON E,TIMOFTE R.NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu,HI: IEEE,2017: 126-135. [19] GLASNER D,BAGON S,IRANI M.Super-resolution from a single image[C]//Proceedings of the 12th International Conference on Computer Vision:Kyoto: IEEE,2009: 349-356. [20] FREEMAN W T,JONES T R,PASZTOR E C.Example-based super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2): 56-65. [21] HUANG Jiabin,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA: IEEE,2015: 5197-5206. [22] WANG Xiaolong,GIRSHICK R,GUPTA A,et al.Non-local neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT:IEEE,2018:7794-7803. [23] LIU D,WEN B,FAN Y,et al.Non-local recurrent network for image restoration[J].Advances in Neural Information Processing Systems,2018:47007607. [24] ZHANG Yulun,LI Kunpeng,LI Kai,et al.Image super-resolution using very deep residual channel attention networks[M]//Lecture Notes in Computer Science.Cham: Springer International Publishing,2018: 294-310. [25] WANG Zhou,BOVIK A C,SHEIKH H R,et al.Image quality assessment: from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4): 600-612. [26] ZHAO Lijun,TANG Ping,HUO Lianzhi.Feature significance-based multibag-of-visual-words model for remote sensing image scene classification[J].Journal of Applied Remote Sensing,2016,10(3): 035004. [27] YANG Yi,NEWSAM S.Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.San Jose California: ACM Press,2010: 270-279. [28] CHENG Gong,HAN Junwei,LU Xiaoqiang.Remote sensing image scene classification: benchmark and state of the art[J].Proceedings of the IEEE,2017,105(10): 1865-1883. [29] BELL-KLIGLER S,SHOCHER A,IRANI M.Blind super-resolution kernel estimation using an internal-GAN[EB/OL].[2024-09-01].https://arxiv.org/abs/1909.06581v6. [30] MEI Yiqun,FAN Yuchen,ZHOU Yuqian,et al.Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA: IEEE,2020: 5690-5699. |