测绘通报 ›› 2025, Vol. 0 ›› Issue (1): 16-21.doi: 10.13474/j.cnki.11-2246.2025.0104

• 智能化电力测绘 • 上一篇    

基于非局部挖掘再现网络的自监督无人机航拍图像超分辨率重建

张永挺1, 林江涛1, 谢绍敏1, 刘剑2   

  1. 1. 广东电网有限责任公司中山供电局, 广东 中山 473006;
    2. 武汉大学电气与自动化学院, 湖北 武汉 430072
  • 收稿日期:2024-09-06 发布日期:2025-02-09
  • 作者简介:张永挺(1980—),男,高级工程师,从事电力系统智能运维技术方面研究工作。E-mail:305135125@qq.com
  • 基金资助:
    南方电网公司科技项目(GDKJXM20230706)

Super-resolution reconstruction of aerial images from self-supervised UAV based on non-local mining reconstruction network

ZHANG Yongting1, LIN Jiangtao1, XIE Shaomin1, LIU Jian2   

  1. 1. Zhongshan Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Zhongshan 473006, China;
    2. School of Electrical Engineering & Automation, Wuhan University, Wuhan 430072, China
  • Received:2024-09-06 Published:2025-02-09

摘要: 近年来,深度卷积神经网络在无人机航拍图像超分辨率任务中应用,使得无人机航拍图像超分辨率的性能取得了巨大的提升。然而,基于卷积神经网络的超分辨率方法依赖于特定的训练数据集,这种数据集通常是通过固定双三次采用内核对图像进行下采样构建的。当处理后的图像不满足这种“理想”情况时,其性能将急剧下降。因此,本文提出一种基于非局部挖掘再现网络的自监督无人机航拍图像超分辨率重建方法(NLMRN)。NLMRN只需要一张输入图像,无需对外部数据集进行预训练。它利用无人机航拍图像内部信息的非局部再现性,对输入图像本身进行下采样,以获得较低分辨率的图像并进行训练。为了更好地学习非局部重复特征,使用非局部上下文挖掘块(NLCM)建立非局部区域间的关系,并选择全局特征图的子集补充每个特定位置,以获得精确细节和纹理的重建。NLCM有效弥补了卷积运算一次只能处理一个局部邻域的不足。通过大量的试验验证, NLMRN 在处理“非理想”条件下的无人机航拍图像时,明显优于其他先进的超分辨率方法。

关键词: 无人机航拍, 超分辨率, 非局部再现性, 全局特征图

Abstract: In recent years, the application of deep convolutional neural networks in UAV aerial image super-resolution tasks has made a huge leap in the performance of UAV aerial image super-resolution. However,super-resolution methods based-on convolutional neural network rely on specific training datasets, which are typically constructed by downsampling images using a fixed bicubic kernel. When the processed image does not meet this “ideal” situation, its performance will drop dramatically. This paper proposes a self-supervised UAV aerial image super-resolution reconstruction method based on non-local mining reconstruction network (NLMRN) to solve this problem. NLMRN does not require external datasets for pre-training, only an input image. It exploits the non-local reproducibility of the internal information of UAV aerial images by downsampling the input image itself to obtain a lower resolution image for training. To better learn non-local repeated features, we use the non-local context mining block (NLCM) to establish relationships between non-local regions and select a subset of global feature maps to supplement each specific location to obtain precise details and texture reconstruction. NLCM effectively makes up for the shortcoming that the convolution operation can only process one local neighborhood at a time. Through extensive experimental verification, NLMRN is significantly better than other advanced super-resolution methods when processing UAV aerial images under “non-ideal” conditions.

Key words: UAV aerial, super-resolution, non-local reproducibility, global feature map

中图分类号: