[1] SHEN H,LIN D,YANG X,et al.Vision-based multi-object tracking through UAV swarm[J].IEEE Geoscience and Remote Sensing Letters,2023,20:6008905. [2] BHARATI P,PRAMANIK A.Deep learning techniques—R-CNN to mask R-CNN: a survey[C]//Proceedings of 2020 Computational Intelligence in Pattern Recognition.[S.l.]: Springer,2020:657-668. [3] TERVEN J,CORDOVA-ESPARZA D M,Romero-González J A.A comprehensive review of YOLO architectures in computer vision:from YOLOv1 to YOLOv8 and YOLO-NAS[J].Machine Learning and Knowledge Extraction,2023,5(4):1680-1716. [4] ZHENG D,DONG W,HU H,et al.Less is more:focus attention for efficient DETR[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision.Paris:IEEE,2023:6674-6683. [5] CIAPARRONE G,SÁNCHEZ F L,TABIK S,et al.Deep learning in video multi-object tracking:a survey[J].Neurocomputing,2020,381:61-88. [6] PAL S K,PRAMANIK A,MAITI J,et al.Deep learning in multi-object detection and tracking:state of the art[J].Applied Intelligence,2021,51(21):6400-6429. [7] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].2018-04-01[2024-03-02].https://arxiv.org/abs/1804.02767v1. [8] 王玺坤,姜宏旭,林珂玉.基于改进型YOLO算法的遥感图像舰船检测[J].北京航空航天大学学报,2020,46(6):1184-1191. [9] 马啸,邵利民,金鑫,等.改进的YOLO模型及其在舰船目标识别中的应用[J].电讯技术,2019,59(8):869-874. [10] 吴杰,段锦,赫立群,等.DS-YOLO网络在遥感图像中的飞机检测算法研究[J].计算机工程与应用,2021,57(1):181-187. [11] 郑志强,刘妍妍,潘长城,等.改进YOLO V3遥感图像飞机识别应用[J].电光与控制,2019,26(4):28-32. [12] GE Z,LIU S T,WANG F,et al.YOLOX:exceeding YOLO series in 2021[EB/OL].[2024-03-02].https://arxiv.org/abs/2107.08430v2. [13] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2024-03-02].https://arxiv.org/abs/2004.10934v1. [14] BATHIJA A,SHARMA G.Visual object detection and tracking using YOLO and SORT[J].International Journal of Engineering Research and Technology,2019,8(11):345-355. [15] VEERAMANI B,RAYMOND J W,CHANDA P.DeepSort:deep convolutional networks for sorting haploid maize seeds[J].BMC Bioinformatics,2018,19(9):289. [16] ZHANG J,ZHOU S P,WANG J J,et al.Frame-wise motion and appearance for real-time multiple object tracking[EB/OL].[2024-03-02].https://arxiv.org/abs/1905.02292v1. [17] FISCHER T,HUANG T E,PANG J,et al.Qdtrack:quasi-dense similarity learning for appearance-only multiple object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(12):15380-15393. [18] NIU Z,ZHONG G,YU H.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452:48-62. [19] ZHANG Y,SUN P,JIANG Y,et al.Bytetrack:multi-object tracking by associating every detection box[C]//Proceedings of 2022 European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:1-21. [20] SHAO S,ZHAO Z J,LI B X,et al.CrowdHuman:a benchmark for detecting human in a crowd[EB/OL].[2024-03-02].https://arxiv.org/abs/1805.00123v1. [21] MILAN A,LEAL-TAIXE L,REID I,et al.MOT16:a benchmark for multi-object tracking[EB/OL].[2024-03-02].https://arxiv.org/abs/1603.00831v2. [22] ZHANG S,BENENSON R,SCHIIELE B.Citypersons:a diverse dataset for pedestrian detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:3213-3221. [23] ZHANG S,XIE Y,WAN J,et al.Widerperson:a diverse dataset for dense pedestrian detection in the wild[J].IEEE Transactions on Multimedia,2019,22(2):380-393. [23] 韩世静,苗书锋,郝向阳,等.监控视频动态目标的空间定位方法[J].测绘通报,2022(8):87-92. |