[1] 柳景斌,赵智博,胡宁松,等.室内高精度定位技术总结与展望[J].武汉大学学报(信息科学版),2022,47(7):997-1008. [2] 尤承增,彭玲,王建辉,等.高精度室内地图辅助VLC与PDR融合定位[J].地球信息科学学报,2019,21(9):1402-1410. [3] 徐爱功,闫可新,高嵩,等.一种单目视觉里程计/UWB组合室内定位方法[J].导航定位学报,2021,9(5):82-88. [4] WU J,SONG X.Review on development of simultaneous localization and mapping technology[J].Journal of Shandong University (Engineering Science),2021,51(5):16-31. [5] 杜清运,况路路,任福,等.自动驾驶高精度地图特征分析及发展展望[J].地球信息科学学报,2024,26(1):15-24. [6] 付明磊,卫宁伟,金宇强,等.面向动态环境的视觉惯性定位方法[J].传感技术学报,2024,37(2):268-277. [7] 岑文广,许雄,王国健,等.深空探测巡视器视觉导航定位方法研究与地面试验场验证[J].测绘通报,2022(10):49-55. [8] 胡凯,吴佳胜,郑翡,等.视觉里程计研究综述[J].南京信息工程大学学报(自然科学版),2021,13(3):269-280. [9] 张彧,檀祖冰,曹东璞,等.基于视觉和惯性测量单元的里程计关键技术研究综述[J/OL].机械工程学报,2024:1-19.(2024-05-11)[2024-10-05].https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB 20240508001&dbname=CJFD&dbcode=CJFQ. [10] 曾攀,潘树国,黄砺枭,等.基于加权预积分和快速初始化的惯性辅助单目前端模型[J].测绘通报,2019(8):8-13,19. [11] HUANG Guoquan.Visual-inertial navigation:a concise review[C]//Proceedings of 2019 International Conference on Robotics and Automation.Montreal:IEEE,2019:9572-9582. [12] YUE Zhe,LIAN Baowang,TANG Chengkai,et al.A novel adaptive federated filter for GNSS/INS/VO integrated navigation system[J].Measurement Science and Technology,2020,31(8):085102. [13] LIU Yuzhen,MENG Ziyang.Online temporal calibration based on modified projection model for visual-inertial odometry[J].IEEE Transactions on Instrumentation and Measurement,2020,69(7):5197-5207. [14] NGUYEN T H,NGUYEN T M,XIE Lihua.Tightly-coupled single-anchor ultra-wideband-aided monocular visual odometry system[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation.Paris:IEEE,2020:665-671. [15] 刘哲,史殿习,杨绍武,等.视觉惯性导航系统初始化方法综述[J].国防科技大学学报,2023,45(2):15-26. [16] FAN Yunfei,ZHAO Tianyu,WANG Guidong.SchurVINS:schur complement-based lightweight visual inertial navigation system[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2024:17964-17973. [17] ZHAI Chaoyang,WANG Meiling,YANG Yi,et al.Robust vision-aided inertial navigation system for protection against ego-motion uncertainty of unmanned ground vehicle[J].IEEE Transactions on Industrial Electronics,2021,68(12):12462-12471. [18] ZHANG Zhuqing,DONG Peng,WANG Jinran,et al.Improving S-MSCKF with variational Bayesian adaptive nonlinear filter[J].IEEE Sensors Journal,2020,20(16):9437-9448. [19] XUE Chao,HUANG Yulong,ZHAO Cheng,et al.A Gaussian-generalized-inverse-Gaussian joint-distribution-based adaptive MSCKF for visual-inertial odometry navigation[J].IEEE Transactions on Aerospace and Electronic Systems,2023,59(3):2307-2328. [20] SOLODAR D,KLEIN I.VIO-DualProNet:Visual-inertial odometry with learning based process noise covariance[J].Engineering Applications of Artificial Intelligence,2024,133:108466. [21] HUANG Yulong,ZHANG Yonggang,WU Zhemin,et al.A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J].IEEE Transactions on Automatic Control,2018,63(2):594-601. [22] YUE Zhe,LIAN Baowang,GAO Yuting.Robust adaptive filter using fuzzy logic for tightly-coupled visual inertial odometry navigation system[J].IET Radar,Sonar & Navigation,2020,14(3):364-371. [23] YOO J C,HAN T H.Fast normalized cross-correlation[J].Circuits,Systems and Signal Processing,2009,28(6):819-843. [24] MOURIKIS A I,ROUMELIOTIS S I.A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings of 2007 IEEE International Conference on Robotics and Automation.Rome:IEEE,2007:3565-3572. [25] 刘涛,张星,李清泉,等.一种运动恢复结构和航位推算结合的室内行人视觉定位方法[J].地球信息科学学报,2017,19(6):744-753. [26] 罗豪龙,杨子迪,李雪强,等.复杂场景下基于无人平台的视觉/惯性/超宽带数据集[J].测绘通报,2024(9):87-95. [27] QIN Tong,LI Peiliang,SHEN Shaojie.VINS-mono:a robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics,2018,34(4):1004-1020. |