测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 74-78,99.doi: 10.13474/j.cnki.11-2246.2025.0512

• 学术研究 • 上一篇    

基于改进HRNet的高速公路路域内光伏板信息提取

王靖凯1,2, 葛星彤1,2, 李兆博1,3, 丁翔4, 彭玲1,2   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094;
    2. 中国科学院大学资源与环境学院, 北京 100049;
    3. 中国科学院大学电子电气与通信工程学院, 北京 100049;
    4. 中科宇图科技股份有限公司, 北京 100101
  • 收稿日期:2024-10-09 发布日期:2025-06-05
  • 通讯作者: 彭玲。E-mail:pengling@aircas.ac.cn
  • 作者简介:王靖凯(1999—),男,硕士生,研究方向为遥感信息提取。E-mail:wjkzzhn@163.com
  • 基金资助:
    能源基金会项目(G-2305-34616)

Information extraction of photovoltaic panels in highway area based on improved HRNet

WANG Jingkai1,2, GE Xingtong1,2, LI Zhaobo1,3, DING Xiang4, PENG Ling1,2   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
    4. China Sciences Mapuniverse Technology Co., Ltd., Beijing 100101, China
  • Received:2024-10-09 Published:2025-06-05

摘要: 随着绿色能源需求的日益增长,高速公路路域内光伏板基础设施成为可再生能源发展的一种重要途径。收费站和服务区作为高速公路路域的重要组成部分,其光伏发电也受到重视。本文研究了利用深度学习方法通过高分辨率遥感影像识别高速公路路域内收费站和服务区配置光伏板信息的技术方法。以江苏省作为研究试验区,下载全省谷歌19级遥感影像数据,通过制作样本,使用现有经典语义分割网络HRNet、ResNet、FCN和U-Net对试验区进行信息提取,获得光伏板信息提取结果;通过消融试验证实了本文融合CBAM注意力机制的HRNet语义分割网络提取效果最佳。该方法为高速公路路域内收费站和服务区的光伏板智能监测管理提供了技术支撑。

关键词: 高速公路路域内光伏, 高分辨率遥感影像, 改进的HRNet语义分割网络, CBAM注意力机制, 江苏省试验区

Abstract: With the increasing demand for green energy, the photovoltaic panel infrastructure in the highway area has become an important way to develop renewable energy. As an important part of the highway, the photovoltaic power generation of toll stations and service areas has also been paid attention to. This paper studies the technical method of using deep learning method to identify the information of photovoltaic panels at tollbooths and service areas in the highway road domain through high-resolution remote sensing images. Taking Jiangsu province as the research experimental area, Google 19 remote sensing image data of the whole province are downloaded. By making samples, the existing classical semantic segmentation networks HRNet, ResNet, FCN and U-Net are used to extract information from the experimental area, and the photovoltaic panel information extraction results are obtained. Ablation experiments confirm that the HRNet semantic segmentation network combined with CBAM attention mechanism proposed in this paper has the best extraction effect. This method provides technical support for the intelligent monitoring and management of photovoltaic panels in toll stations and service areas of expressways.

Key words: photovoltaic panels in highway, high-resolution remote sensing images, improved HRNet semantic segmentation network, CBAM attention mechanism, Jiangsu province experimental area

中图分类号: