测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 45-50.doi: 10.13474/j.cnki.11-2246.2025.0908

• 学术研究 • 上一篇    下一篇

双层耦合非参数Bayesian的遥感图像时空反射率融合

陈楠1,2, 张标3, 杨楠1, 刘洲洲1,4   

  1. 1. 西安航空学院计算机学院, 陕西 西安 710077;
    2. 智能空间信息国家级重点实验室, 北京 100029;
    3. 中煤航测遥感集团有限公司, 陕西 西安 710100;
    4. 西北工业大学计算机学院, 陕西 西安 710072
  • 收稿日期:2025-01-22 发布日期:2025-09-29
  • 通讯作者: 张标。E-mail:zhangbiaoGIS@163.com
  • 作者简介:陈楠(1985—),女,博士,高级工程师,主要从事遥感信息智能提取研究。E-mail:chcdut@126.com
  • 基金资助:
    国家自然科学基金(42401434);陕西省自然科学基础研究计划(2024JC-YBQN-0656);智能空间信息国家级重点实验室开放基金(KF2023YB02-07)

Spatio-temporal reflectance fusion for remote sensing images using a double-coupled non-parametric Bayesian approach

CHEN Nan1,2, ZHANG Biao3, YANG Nan1, LIU Zhouzhou1,4   

  1. 1. School of Computer Science, Xi'an Aeronautical University, Xi'an 710077, China;
    2. National Key Laboratory of Intellegent Geospatial Information, Beijing 100029, China;
    3. Aerial Photogrammetry & Remote Sensing Group Co., Ltd., Xi'an 710100, China;
    4. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2025-01-22 Published:2025-09-29

摘要: 随着遥感技术的快速发展,获取同时具备高空间和高时间分辨率的遥感图像成为研究热点。传统单一光学传感器因条带宽度与重访周期限制,难以同时满足这两种需求。遥感图像时空反射率融合技术通过结合精细空间分辨率但采集频率低的图像与粗空间分辨率但采集频率高的图像,有效解决了这一问题。本文提出了一种基于双层时空融合框架的方法,该框架结合跨分辨率注意力机制和非参数Bayesian动态字典学习机制,旨在生成兼具高空间和高时间分辨率的融合图像。试验结果表明,该方法在物候变化和地物突变区域均表现出较高的融合精度和稳健性,相比现有方法能更好地保留光谱信息和空间细节。

关键词: 遥感图像融合, 时空反射率融合, 跨分辨率注意力机制, 非参数Bayesian

Abstract: With the rapid development of remote sensing technology,acquiring remote sensing images that simultaneously possess high spatial and high temporal resolution has become a research hotspot.Traditional single optical sensors are limited by strip width and revisit period,making it difficult to meet both requirements simultaneously.The remote sensing image spatio-temporal reflectance fusion technique effectively addresses this issue by combining images with fine spatial resolution but low acquisition frequency and images with coarse spatial resolution but high acquisition frequency.This paper proposes a method based on a dual-layer spatio-temporal fusion framework,which integrates a cross-resolution attention mechanism and a nonparametric Bayesian dynamic dictionary learning mechanism,aiming to generate fused images with both high spatial and high temporal resolution.Experimental results demonstrate that the proposed method exhibits high fusion accuracy and robustness in regions with phenological changes and abrupt land cover changes,and it can better preserve spectral information and spatial details compared to existing methods.

Key words: remote sensing image fusion, spatio-temporal reflectance fusion, cross-resolution attention mechanism, nonparametric Bayesian

中图分类号: