测绘通报 ›› 2025, Vol. 0 ›› Issue (7): 26-31.doi: 10.13474/j.cnki.11-2246.2025.0705

• 学术研究 • 上一篇    下一篇

一种实时动态特征点识别方法及其视觉惯性里程计应用

曹龙1, 柳景斌1, 张伟2, 李孟祥3   

  1. 1. 武汉大学测绘遥感信息工程全国重点实验室, 湖北 武汉 430079;
    2. 武汉捷探科技有限公司, 湖北 武汉 430022;
    3. 测绘遥感信息工程国家重点实验室深圳研发中心, 广东 深圳 518057
  • 收稿日期:2024-12-03 发布日期:2025-08-02
  • 通讯作者: 李孟祥。E-mail:mexili@yahoo.com
  • 作者简介:曹龙(2000—),男,硕士,主要研究方向为多源融合SLAM。E-mail:2018302141093@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB3906101);国家自然科学基金(42474060);深圳市科技计划(JCYJ20210324123611032);湖北省自然科学基金(2024AFD403);武汉市人工智能创新专项(2023010402040029);武汉大学测绘遥感信息工程全国重点实验室自主科研课题

A real-time dynamic feature point identification method and its application in visual-inertial odometry

CAO Long1, LIU Jingbin1, ZHANG Wei2, LI Mengxiang3   

  1. 1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    2. Wuhan Geo-Detection Technology Co., Ltd., Wuhan 430022, China;
    3. Shenzhen R&D Center of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Shenzhen 518057, China
  • Received:2024-12-03 Published:2025-08-02

摘要: 视觉惯性里程计是一种常用的定位技术。该技术是建立在静态环境假设的前提下,在动态环境中稳健性和定位精度会降低。由于使用语义分割或目标检测的方法对动态物体进行识别,存在无法识别未定义的动态物体、错误识别静止物体以及实时性差等问题。为此,本文提出了一种实时动态特征点识别方法,用于提高视觉惯性里程计在动态场景中的定位精度。首先,对图像中的特征点速度矢量进行聚类分析;然后,基于极线匹配误差,对特征点的运动状态进行估计,识别出高动态点并去除,为低动态点设置权重因子;最后,在多组公开的动态数据集中进行评估。与其他的视觉惯性里程计算法的对比结果表明,本文方法显著提高了视觉惯性里程计在动态环境下的定位精度。

关键词: 视觉惯性里程计, 动态物体, 定位, 特征点, 聚类分析, 极线匹配误差

Abstract: Visual-inertial odometry is a widely used localization technology. Visual-inertial odometry technology relies on the assumption of a static environment. In dynamic environments, the robustness and localization accuracy of visual-inertial odometry significantly decrease. Some researchers employ semantic segmentation or object detection methods to identify dynamic objects. However, these approaches face challenges such as the inability to detect undefined dynamic objects, misidentification of static objects, and poor real-time performance. To tackle these issues, we propose a real-time identification method of dynamic feature points to enhance the accuracy of visual-inertial odometry in dynamic environments. This method performs clustering analysis on the velocity vectors of feature points in the image and estimates motion states of feature points by using epipolar matching errors. High-dynamic points are identified and removed, while weight factors are assigned to low-dynamic points. Finally, we evaluate the proposed method on the publicly available datasets. Compared with other visual-inertial odometry algorithms, the preposed approach significantly improves the localization accuracy of visual-inertial odometry in dynamic environments.

Key words: visual-inertial odometry, dynamic objects, localization, feature points, clustering analysis, epipolar matching errors

中图分类号: