测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 64-69.doi: 10.13474/j.cnki.11-2246.2025.0911

• 学术研究 • 上一篇    下一篇

融合几何特征和语义信息的机器人动态场景视觉SLAM算法

何婷婷1, 蒋祥龙1, 何胜喜2,3   

  1. 1. 重庆科创职业学院智能制造与机器人学院, 重庆 402160;
    2. 高端装备机械传动全国重点实验室, 重庆 400044;
    3. 重庆长安汽车股份有限公司, 重庆 400023
  • 收稿日期:2025-02-20 发布日期:2025-09-29
  • 作者简介:何婷婷(1991—),女,讲师,研究方向为电气工程及自动化、智能控制技术等。E-mail:hett1991@163.com
  • 基金资助:
    2024年度重庆市教委科学技术研究青年项目(KJQN202405410)

Robot dynamic scene visual SLAM algorithm integrating geometric features and semantic information

HE Tingting1, JIANG Xianglong1, HE Shengxi2,3   

  1. 1. Intelligent Manufacturing and Robotics College, Chongqing College of Science and Creation, Chongqing 402160, China;
    2. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing 400044, China;
    3. Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China
  • Received:2025-02-20 Published:2025-09-29

摘要: 针对机器人实现高精度视觉SLAM面临的动态环境下的稳健性差、定位误差大及特征丢失等问题,本文提出了一种融合几何特征和语义信息的视觉SLAM算法(Geo-Semantic SLAM)。该算法以ORB-SLAM2为基础,深度结合实例分割网络与几何特征提取技术,有效提升了系统在动态场景中的适应能力。具体而言,Geo-Semantic SLAM通过实例分割剔除动态目标的干扰,并设计了一种基于静态目标语义信息的相机姿态优化方法,显著弥补了特征点因动态剔除导致的损失。试验基于TUM数据集进行,结果表明,Geo-Semantic SLAM在动态环境下不仅具有更高的定位与建图精度,而且在多种场景中均优于传统算法及语义SLAM算法。

关键词: 几何特征, 语义信息, 动态场景, 机器人, SLAM

Abstract: To address the challenges of achieving high-accuracy visual SLAM in dynamic scenes,including low robustness,large localization errors,and feature loss,this paper proposes a visual SLAM algorithm that integrates geometric features and semantic information (Geo-Semantic SLAM).Built upon the ORB-SLAM2 framework,the proposed method deeply integrates semantic segmentation networks with geometric feature extraction techniques,significantly enhancing its adaptability to dynamic environments.Specifically,Geo-Semantic SLAM employs semantic segmentation to eliminate the influence of dynamic objects and introduces a camera pose optimization method based on the semantic information of static objects,effectively compensating for the feature loss caused by dynamic object removal.Experimental validation on the TUM dataset demonstrates that Geo-Semantic SLAM achieves superior localization and mapping accuracy in dynamic environments.Moreover,it consistently outperforms traditional algorithms and semantic SLAM methods across various scenarios.

Key words: geometric features, semantic information, dynamic scenes, robots, SLAM

中图分类号: