测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 168-172.doi: 10.13474/j.cnki.11-2246.2025.0928

• 学术研究 • 上一篇    下一篇

融合LightGlue的双目视觉SLAM算法

汪志刚, 冯凯, 刘懿晨, 刘辉, 张文俊   

  1. 赣南科技学院, 江西 赣州 341000
  • 收稿日期:2025-02-18 发布日期:2025-09-29
  • 通讯作者: 冯凯。E-mail:fengkai2015@163.com
  • 作者简介:汪志刚(1996—),男,硕士,研究方向为视觉SLAM。E-mail:wangleap@qq.com
  • 基金资助:
    江西省教育厅科学技术研究青年项目(GJJ2203618)

Binocular vision SLAM algorithm with LightGlue

WANG Zhigang, FENG Kai, LIU Yichen, LIU Hui, ZHANG Wenjun   

  1. Gannan University of Science and Technology, Ganzhou 341000, China
  • Received:2025-02-18 Published:2025-09-29

摘要: 针对ORB-SLAM2算法在纹理匮乏和低光照环境下定位精度差的问题,本文提出了一种融合LightGlue的双目视觉SLAM算法。LightGlue通过自注意力机制和交叉注意力机制,显著提高了特征匹配的精度和速度,尤其在纹理匮乏和低光照环境下表现优异。此外,本文提出了一种改进的RANSAC采样策略,通过加权采样减少误匹配点对的影响,进一步提升了算法的稳健性和效率。试验在EuRoC数据集和真实场景中进行,结果表明,本文算法相较于ORB-SLAM2,最大误差优化了48.2%,平均误差优化了26.2%,定位误差达到厘米级,在复杂场景下具有更高的精度。

关键词: 视觉SLAM, 双目相机, LightGlue, 误匹配剔除, 深度学习

Abstract: Aiming to address the issue of poor localization accuracy of ORB-SLAM2 in texture-poor and low-light environments,this paper proposes a binocular visual SLAM algorithm integrated with LightGlue.By leveraging self-attention and cross-attention mechanisms,LightGlue significantly enhances the accuracy and speed of feature matching,demonstrating superior performance in challenging conditions such as texture-poor and low-light environments.Additionally,an improved RANSAC sampling strategy is introduced,which employs weighted sampling to mitigate the impact of mismatched point pairs,thereby further enhancing the robustness and efficiency of the algorithm.Experiments conducted on the EuRoC dataset and real-world scenarios show that the proposed algorithm achieves substantial improvements over ORB-SLAM2,with a maximum error reduction of 48.2%and an average error reduction of 26.2%.The localization error is reduced to the centimeter level,indicating higher accuracy in complex scenes.

Key words: visual SLAM, binocular camera, LightGlue, outlier rejection, deep learning

中图分类号: