测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 46-51.doi: 10.13474/j.cnki.11-2246.2025.1208

• 学术研究 • 上一篇    

面向复杂环境无人车的抗差因子图轮式里程计辅助GNSS+INS组合导航算法

李波1, 王贻朋1, 邹璇2, 尚洪猛1, 徐玉玲1, 鲍国晴1   

  1. 1. 中石化石油工程地球物理有限公司北斗运营服务中心, 江苏 南京 211112;
    2. 武汉大学卫星导航定位技术研究中心, 湖北 武汉 430079
  • 收稿日期:2025-04-14 发布日期:2025-12-31
  • 通讯作者: 邹璇。E-mail:zxuan@whu.edu.cn
  • 作者简介:李波(1976—),男,硕士,高级工程师,主要从事北斗导航定位技术研究。E-mail:bd-lib.osgc@sinopec.com
  • 基金资助:
    国家重点研发计划(2022YFB3904605)

A robust factor-graph-based GNSS+INS integrated navigation algorithm for unmanned vehicles in complex environments with wheel odometry assistance

LI Bo1, WANG Yipeng1, ZOU Xuan2, SHANG Hongmeng1, XU Yuling1, BAO Guoqing1   

  1. 1. BeiDou Operation Service Center, Sinopec Geophysical Corporation, Nanjing 211112, China;
    2. GNSS Research Center, Wuhan University, Wuhan 430079, China
  • Received:2025-04-14 Published:2025-12-31

摘要: 复杂环境(如城市峡谷或森林路径)中的无人车导航面临GNSS信号遮挡、多路径效应及离群值干扰等挑战,传统EKF方法在应对这些问题时存在局限性。近年来,因子图优化(FGO)逐渐成为多源传感器融合领域的研究热点,表现出优越的全局优化能力和较高的精度。然而,由于FGO基于最小二乘法,对异常观测值的抗差性不足,导致其在复杂环境中的导航性能受限。本文面向复杂环境下的无人车应用场景,提出了一种联合Huber核函数与卡方检验的抗差因子图优化算法。通过引入轮式里程计(ODO)辅助GNSS+INS组合导航,并在因子图框架中,将ODO节点作为运动约束,然后将GNSS节点和INS节点的观测信息融合,引入稳健核函数以增强算法对离群值的抵御能力。试验表明,本文算法在强多路径效应和GNSS信号失效场景中具有较高的精度和稳健性,可显著提升无人车在复杂环境下的导航性能,为高精度无人车导航提供了新的解决方案。

关键词: 复杂环境, 抗差, 因子图优化, 轮式里程计, GNSS+INS, 组合导航

Abstract: Unmanned vehicle navigation in complex environments (such as urban canyons or forest trails)faces challenges such as GNSS signal blockage,multipath effects,and outlier interference.Traditional EKF methods exhibit limitations in addressing these issues.Recently,factor graph optimization (FGO)has emerged as a research focus in the field of multi-sensor fusion,demonstrating superior global optimization capabilities and high accuracy.However,due to its reliance on the least-squares method,FGO lacks robustness against outliers,limiting its navigation performance in complex environments.This paper proposes a robust factor-graph-based optimization algorithm that combines Huber kernel function and chi square test for unmanned vehicle application scenarios in complex environments.The algorithm introduces wheel odometry (ODO)to assist GNSS+INS integrated navigation.Within the factor graph framework,ODO nodes are introduced as motion constraints,fusing observational data from GNSS and INS nodes.A robust kernel function is applied to enhance the algorithm's resistance to outliers.Experimental results show that the proposed algorithm achieves high accuracy and robustness in scenarios with strong multipath effects and GNSS signal outages,significantly improving navigation performance in complex environments.This provides a novel solution for high-precision unmanned vehicle navigation.

Key words: complex environments, robustness, factor graph optimization, wheel odometry, GNSS+INS, integrated navigation

中图分类号: