测绘通报 ›› 2017, Vol. 0 ›› Issue (8): 76-79,105.doi: 10.13474/j.cnki.11-2246.2017.0259

• 学术研究 • 上一篇    下一篇

国产卫星影像配准技术研究

姜钧陶, 戚浩平, 申佩佩, 马昱肖   

  1. 东南大学交通学院测绘工程系, 江苏 南京 210096
  • 收稿日期:2016-12-01 修回日期:2017-02-24 出版日期:2017-08-25 发布日期:2017-08-29
  • 作者简介:姜钧陶(1993-),女,硕士生,主要从事遥感方面的研究。E-mail:jjtseu@163.com
  • 基金资助:
    全国边海防地区基础地质遥感调查(121201003000150003)

Research on the Registration of Domestic Satellite Images

JIANG Juntao, QI Haoping, SHEN Peipei, MA Yuxiao   

  1. Department of Surveying Engineering, Southeast University, Nanjing 210096, China
  • Received:2016-12-01 Revised:2017-02-24 Online:2017-08-25 Published:2017-08-29

摘要: 我国西部高海拔山区的地形地貌使得在卫星影像上确定同名特征点比较困难,为了解决国产卫星影像存在的谱段偏差,本文选择了基于SIFT算法、基于区域灰度和人工配准3种方法,对ZY1-02C、ZY-3和GF-1等国产卫星影像展开了配准试验研究,应用目视法和中误差法进行了精度评价,并对结果进行了对比分析。试验结果表明:人工法虽能获得较高的配准精度,但效率很差;基于区域灰度法受影像亮度差异影响很大,同名点提取少,精度最差;基于SIFT算法自动化程度最高,可以提取大量特征点,并能筛选提出误匹配点,配准精度较高。

关键词: 国产卫星影像, 影像配准, SIFT算法, 配准精度分析

Abstract: It is difficult to find correspondence points on the satellite images of the high altitude mountainous area of west China because of the geographic and geomorphic conditions. To solve the multispectral deviation of the satellite images, this paper use SIFT-based algorithm, regional gray-based algorithm and artificial registration to do registration experiments on domestic satellite images such as ZY1-02C, ZY-3, GF-1 and so on. Then visual method and error method are used to evaluate precisions, the results of which are contrasted and analyzed. The experimental results show that:artificial method has higher registration precision, but the efficiency is poor; regional gray-based method is affected by luminance difference which extracts least correspondence features and has the lowest registration precision; SIFT-based method has the highest degree of automation which can extract a huge amount of correspondence features and can also screen out false matching points. It has a higher registration precision.

Key words: domestic satellite image, image registration, SIFT algorithm, registration accuracy analysis

中图分类号: