[1] 李剑萍, 郑有飞. 气象卫星混合像元分解研究综述[J]. 中国农业气象, 2000, 21(2):44-47. [2] 成宝芝, 赵春晖, 王玉磊. 结合光谱解混的高光谱图像异常目标检测SVDD算法[J]. 应用科学学报, 2012, 30(1):82-88. [3] KESHAVA N, MUSTARD J F. Spectral Unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1):44-57. [4] BOARDMAN J W, KRUSE F A, GREEN R O. Mapping Target Signatures via Partial Unmixing of AVIRIS Data[C]//Proceedings of the 5th JPL Airborne Earth Science Workshop. Pasadena, USA:JPL, 1995:23-26. [5] NASCIMENTO J M P, DIAS J M B. Vertex Component Analysis:A Fast Algorithm to Unmix Hyperspectral Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910. [6] NEVILLE R A, STAENZ K, SZEREDI T, et al. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration[C]//Proceedings of the 21st Canadian Symposium on Remote Sensing. Ottawa, Canada:[s.n.], 1999:21-24. [7] DING H Y, SHI W Z. Fast N-FINDR Algorithm for Endmember Extraction Based on Chi-square Distribution[J]. Journal of Remote Sensing, 2013, 17(1):130-137. [8] 杨可明, 魏华锋, 刘飞, 等. 以光谱信息熵改进的N-FINDR高光谱端元提取算法[J]. 地球信息科学学报, 2015, 17(8):979-985. [9] 杨可明, 刘士文, 王林伟, 等. 光谱最小信息熵的高光谱影像端元提取算法[J]. 光谱学与光谱分析, 2014, 34(8):2229-2233. [10] 张兵, 孙旭, 高连如, 等. 一种基于离散粒子群优化算法的高光谱图像端元提取方法[J]. 光谱学与光谱分析, 2011, 31(9):2455-2461. [11] 路漫漫. 融合PSO的N-FINDR改进端元提取算法研究[D]. 大连:大连海事大学, 2014. [12] 唐晓燕, 高昆, 倪国强, 等. 基于流形学习和空间信息的改进N-FINDR端元提取算法[J]. 光谱学与光谱分析, 2013, 33(9):2519-2524. [13] 齐滨. 高光谱图像分类及端元提取方法研究[D]. 哈尔滨:哈尔滨工程大学, 2012. [14] WINTER M E. A Proof of the N-FINDR Algorithm for the Automated Detection of Endmembers in a Hyperspectral Image[C]//Proceedings of the SPIE Volume 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, Defense and Security. Orlando, Florida, United States:SPIE, 2004:31-41. [15] 朱述龙, 齐建成, 朱宝山, 等. 以凸面单体边界为搜索空间的端元快速提取算法[J]. 遥感学报, 2010, 14(3):482-292. |