测绘通报 ›› 2018, Vol. 0 ›› Issue (7): 112-115.doi: 10.13474/j.cnki.11-2246.2018.0222

• 技术交流 • 上一篇    下一篇

基于K-means算法的突发事件地理信息空间化研究

杨波1, 王继周2, 毛曦2, 马维军2   

  1. 1. 辽宁工程技术大学, 辽宁 阜新 123000;
    2. 中国测绘科学研究院, 北京 100830
  • 收稿日期:2017-09-11 出版日期:2018-07-25 发布日期:2018-08-02
  • 作者简介:杨波(1992-),男,硕士生,研究方向为地理信息科学、数据挖掘。E-mail:michaelyangbo@outlook.com
  • 基金资助:
    基于众源数据的突发事件信息融合与可视化(7771615)

Research on Spatialization of Crowdsourcing Contingency Geographic Information Based on K-means Algorithm

YANG Bo1, WANG Jizhou2, MAO Xi2, MA Weijun2   

  1. 1. Liaoning Technical University, Fuxin 123000, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100830, China
  • Received:2017-09-11 Online:2018-07-25 Published:2018-08-02

摘要: 针对目前众源突发事件地理信息提取中空间化方法的不足,本文提出了基于众源应急事件的地理信息空间化方法研究。采用K-means算法来解决地图服务无法空间化的地理信息问题。地理信息空间化有效地解决了众源应急地理信息提取中地址空间化的不足,实现了最优的地址空间化的识别与存储,同时配合地理信息认知模型可以进一步细化分析地名的空间关系,这为下一步应急地理信息的可视化提供了数据质量的保证。试验结果表明,本文的应急地理信息空间化方法不仅可以对中文地址实现地理信息空间化,而且该方法还适用于以非中文为母语国家的众源应急地理信息空间化,同时还为其他领域的关联识别提供了方法上的参考。该研究可以为应急灾害救援部门提供更高精度的空间地理信息数据,将获取到的众源应急信息准确地显示在地图上。

关键词: 众源, 应急, K-means算法, 空间认知模型, 空间化

Abstract: This paper analyzes the shortcomings of the common spatialization way in the crowdsourcing emergency geographical information extraction.It puts forward the consideration of geographical info interspace based on the sourcing contingency events.K-means algorithm is used to solve the problem that the map service cannot extract the multi-sourcing affairs' spatial material.The spatial circumstance combines the advantages of attribute data and geography.This method carries out the optimal hazard trouble identification and storage.It makes the surveying and mapping better serve the society and the nation more closely related to people.With the geospatial cognitive model,this essay can discuss the spatial relations of toponomy in more specific aspects.This provides a guarantee of data quality for the next step in the visualization of the outburst geographic accident.Trial runs results show that the space of breakthrough geoscience's mishap not only can draw the Chinese placename data,but also identify non-Chinese country.The measure also offers a reference to other relevant areas of research.The study can supply more accurate spatial geonomy's malfunction needs for flying into disaster relief departments.They get to the source of the breaking out record displayed on the plat accurately.

Key words: crowdsourcing, emergency, K-means algorithm, spatial cognition model, spatialization

中图分类号: