测绘通报 ›› 2018, Vol. 0 ›› Issue (7): 5-8,12.doi: 10.13474/j.cnki.11-2246.2018.0199

• 学术研究 • 上一篇    下一篇

非参数贝叶斯字典学习的遥感影像超分辨率重建

李丽1, 隋立春1,2, 康军梅1, 王雪1   

  1. 1. 长安大学地质工程与测绘学院, 陕西 西安 710054;
    2. 地理国情监测国家测绘地理信息局工程中心, 陕西 西安 710054
  • 收稿日期:2017-10-23 出版日期:2018-07-25 发布日期:2018-08-02
  • 作者简介:李丽(1987-),女,博士生,主要从事遥感影像超分辨率重建算法方面的研究。E-mail:15829779607@163.com
  • 基金资助:
    国家自然科学基金(41372330;41571346);国家自然科学基金青年科学基金(41601345)

Remote Sensing Images Super-resolution Reconstruction Based on Bayesian Nonparametric Dictionary Learning

LI Li1, SUI Lichun1,2, KANG Junmei1, WANG Xue1   

  1. 1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    2. National Geographic Condition Monitoring National Mapping Geographic Information Bureau Engineering Center, Xi'an 710054, China
  • Received:2017-10-23 Online:2018-07-25 Published:2018-08-02

摘要: 为充分利用样本及参数的先验信息,对Yang提出的基于稀疏表示的超分辨率重建算法进行了改进,提出了一种基于非参数贝叶斯字典学习的单幅遥感影像超分辨率重建方法。该方法利用Beta-Bernoulli过程进行字典学习,建立字典元素和各参数的概率分布模型,并通过Gibbs进行迭代抽样构成马尔科夫链,用其平稳分布来近似字典元素及各参数的后验分布,最后由低分辨率影像及高分辨率字典的后验分布重建出高分辨率遥感影像。对比双线性、双三次插值及Yang的方法,该算法在平均峰值信噪比方面分别提高了3.29、1.79、0.17 dB,在平均ERGAS方面分别降低了0.78、0.37、0.02 dB。该算法因加入了更多的先验信息,可以使重建影像提供更多高频细节信息,具有一定的普适性。

关键词: 超分辨率重建, 遥感影像, 稀疏表示, 非参数贝叶斯, 概率分布

Abstract: Aiming at taking advantage of the prior information of the samples and the parameters,a single remote sensing image super-resolution method based on nonparametric Bayesian dictionary learning is proposed,modified on the sparse representation algorithm presented by Yang.The Beta-Bernoulli process was used to learn the dictionary,establishing the probability distribution models of dictionary elements and parameters,and the stationary distribution of the Markov chain obtained by Gibbs iteration sampling was used to approximate their posterior.Finally,the related high resolution images were reconstructed by the posterior and the low resolution images.Compared with the bilinear,the bicubic and the super-resolution algorithm based on sparse representation, the average peak signal-to-noise ratio obtained using the method presented in this paper were increased by 3.29,1.79, 0.17 dB,respectively.the average ERGAS were decreased by 0.78, 0.37, 0.02 dB,respectively.Because of more prior added,the reconstruction image produced using the proposed method could provide more high frequency details,performing universally.

Key words: super-resolution, remote sensing images, sparse representation, nonparametric Bayesian, probability distribution

中图分类号: