测绘通报 ›› 2018, Vol. 0 ›› Issue (9): 24-28.doi: 10.13474/j.cnki.11-2246.2018.0273

• 学术研究 • 上一篇    下一篇

农作物病虫害遥感监测综述

简俊凡, 何宏昌, 王晓飞, 李月   

  1. 黑龙江大学电子工程学院, 黑龙江 哈尔滨 150000
  • 收稿日期:2018-04-12 修回日期:2018-05-25 出版日期:2018-09-25 发布日期:2018-09-29
  • 作者简介:简俊凡(1993-),女,硕士,研究方向为遥感图像处理。E-mail:learning_s@163.com
  • 基金资助:

    国家重点研发计划(2016YFB0502502);黑龙江省物联网感知层与传感网络技术创新服务平台

Review of Remote Sensing Monitoring of Crop Pests and Diseases

JIAN Junfan, HE Hongchang, WANG Xiaofei, LI Yue   

  1. Electronic Engineering College of Heilongjiang University, Harbin 150000, China
  • Received:2018-04-12 Revised:2018-05-25 Online:2018-09-25 Published:2018-09-29
  • Contact: 何宏昌。E-mail:hhe@hlju.edu.cn E-mail:hhe@hlju.edu.cn

摘要:

对病虫害进行监测和预警是精准农业的一个重要研究方向,可有效提高粮食产量和质量。本文从使用高光谱遥感技术监测农作物病虫害的原理和技术路线出发,首先阐述了4种光谱特征提取和变换方法,包括原始光谱的导数变换与对数变换、基于光谱位置和面积的特征参数、基于连续统去除的特征参数和植被指数;然后论述了基于统计分析、机器学习和物理模型的3种病虫害监测参数反演方法,建立了光谱反射率和病虫害监测参数间的回归关系;最后分析了将高光谱遥感技术用于农作物病虫害监测的优势和存在问题。

关键词: 遥感, 高光谱, 监测, 农作物, 病虫害

Abstract:

Monitoring and early warning of pests and diseases in crops is an important direction in precision agriculture,which can effectively improve grain yield and quality.From the principle and technical route of monitoring crop pests and diseases with hyperspectral remote sensing,this paper first expounds four spectral feature extraction and transformation methods,including the derivative transformation and logarithmic transformation of original spectra,the characteristic parameters based on spectral position and area,the feature parameters of continuum removal,and the vegetation indexes.Then this paper discusses three inversion methods,including the statistical analysis,the machine learning and the physical model,by which the regression relationship between spectral reflectance and pest monitoring parameters is established.Finally this paper analyzes the advantages and problems of using hyperspectral remote sensing technology for crop pests and diseases monitoring.

Key words: remote sensing, hyperspectral, monitoring, crop, pests and diseases

中图分类号: