测绘通报 ›› 2019, Vol. 0 ›› Issue (10): 40-45.doi: 10.13474/j.cnki.11-2246.2019.0315

• 学术研究 • 上一篇    下一篇

结合双树复小波纹理特征和MRF模型的遥感图像分割

韦春桃1, 赵平1,2, 肖博林1, 白风1, 李小勇1, 杨晚芸1,3   

  1. 1. 重庆交通大学, 重庆 400074;
    2. 中国电建集团贵州电力设计研究院有限公司, 贵州 贵阳 550002;
    3. 中核咨询有限公司四川分公司, 四川 乐山 614000
  • 收稿日期:2019-01-23 修回日期:2019-08-06 出版日期:2019-10-25 发布日期:2019-10-26
  • 作者简介:韦春桃(1968-),女,博士,教授,主要从事影像处理与应用研究。E-mail:269276944@qq.com
  • 基金资助:
    重庆市基础科学与前沿技术研究专项重点项目(cstc2015jcyjBX0023)

Remote sensing image segmentation method based on dual-tree complex wavelet texture feature and MRF model

WEI Chuntao1, ZHAO Ping1,2, XIAO Bolin1, BAI Feng1, LI Xiaoyong1, YANG Wanyun1,3   

  1. 1. Chongqing Jiaotong University, Chongqing 400074, China;
    2. Guizhou Electric Power Design & Research Institute Co., Ltd., Guiyang 550002, China;
    3. Sichuan Branch, China Nuclear Consulting Co., Ltd., Leshan 614000, China
  • Received:2019-01-23 Revised:2019-08-06 Online:2019-10-25 Published:2019-10-26

摘要: 针对经典的小波纹理不能准确地表达影像纹理特征的问题,以及影像分割结果缺少对像元空间相关性和分布关系的考虑。本文提出了结合双树复小波(DT-CWT)纹理和马尔可夫随机场(MRF)模型的高分辨率遥感影像分割方法。首先,通过双树复小波变换提取影像纹理特征,联合光谱特征形成表达影像信息的混合特征向量;然后,将混合特征向量高斯归一化处理,并用K-means聚类的方法对特征空间中的混合特征向量聚类得到初始分割图;最后,借助马尔可夫随机场模型在初始分割结果中引入上下文信息,基于贝叶斯最大后验概率准则得到最终的分割结果。本文通过双树复小波纹理提高了特征表达的准确度,同时使用马尔可夫随机场模型减弱了分割结果中同质区域的“椒盐噪声”,从而进一步提高了高分辨率遥感影像分割的精度。

关键词: 双树复小波变换, 纹理特征, 高斯归一化, 马尔可夫随机场, 高分辨率遥感影像

Abstract: For the classic wavelet textures, the image texture features cannot be accurately expressed. The image segmentation results lack the consideration of the spatial correlation and distribution relationship of the pixels. In this paper, we proposes a combination of dual-tree complex wavelet (DT-CWT) texture and Markov random field (MRF) model for high resolution remote sensing image segmentation method. Firstly, the image texture feature is extracted by dual-tree complex wavelet transform, and the mixed feature vector of the expression image is formed by combining the texture feature and the spectral feature. Then, Gaussian normalization of the mixed feature vectors in the feature space is performed. The K-means clustering method is used to perform the feature vectors in the feature space. The initial segmentation map is obtained by clustering. Finally, using the Markov random field model to introduce context information to represent the initial segmentation results, the initial segmentation results are optimized based on the Bayesian maximum a posteriori probability criterion, and the final segmentation results are obtained. This paper improves the accuracy of feature expression by using dual-tree complex wavelet textures. At the same time, the Markov random field model is used to weaken the "pepper and salt noise" in the homogenous region of the segmentation results, further improving the segmentation accuracy of the high resolution remote sensing image.

Key words: dual-tree complex wavelet transform(DT-CWT), texture feature, Gaussian normalization, Markov random field, high resolution remote sensing image

中图分类号: