测绘通报 ›› 2019, Vol. 0 ›› Issue (4): 21-25.doi: 10.13474/j.cnki.11-2246.2019.0106

• 学术研究 • 上一篇    下一篇

多尺度邻域特征下的机载LiDAR点云电力线分类

王艳军1,2, 李凯1,2, 路立娟3   

  1. 1. 湖南科技大学地理空间信息技术国家地方联合工程实验室, 湖南 湘潭 411201;
    2. 湖南科技大学资源环境与安全工程学院, 湖南 湘潭 411201;
    3. 湘潭市国土资源信息中心, 湖南 湘潭 411201
  • 收稿日期:2018-07-23 修回日期:2018-09-07 出版日期:2019-04-25 发布日期:2019-05-07
  • 作者简介:王艳军(1984-),男,博士,副教授,主要从事激光雷达点云数据处理与建模研究。E-mail:wongyanjun@163.com
  • 基金资助:

    国家自然科学基金(41601426;41771462);湖南省自然科学基金(2018JJ3155);数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放基金(GCWD201806)

Power line classification from airborne LiDAR data via multi-scale neighborhood features

WANG Yanjun1,2, LI Kai1,2, LU Lijuan3   

  1. 1. National-local Joint Engineering Laboratory of Geo-spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China;
    2. School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
    3. Xiangtan Land and Resources Information Center, Xiangtan 411201, China
  • Received:2018-07-23 Revised:2018-09-07 Online:2019-04-25 Published:2019-05-07

摘要:

利用机载激光雷达技术三维测量精度高且获取快速的优点进行电力线自动分类提取已成为点云数据处理与电力应用的重要领域。针对电力线分类模型的自动化和高精度需求,本文提出了基于三维多尺度邻域特征的机载LiDAR点云电力线分类提取模型框架,主要包括4个步骤:电力线候选点滤波、多尺度邻域类型选取、形状结构特征提取和支持向量机分类。通过对2个复杂城市区域的试验数据集和8种不同邻域类型的详细结果对比分析,发现基于多尺度圆球邻域形状结构特征的分类模型结果准确率、召回率和质量分别达到97%、94%和93%,同时整体处理时间在2个试验数据中分别从366、256 s减少到274、160 s。试验结果表明,该方法在多种复杂城市场景中能够实现机载LiDAR数据的电力线较高精度分类提取。

关键词: 机载激光雷达, 城区电力线, 邻域选取, 形状结构特征, 电力线分类

Abstract:

With the rapid development of 3D accurate measurement technology of airborne LiDAR, automatic extraction of power lines from airborne laser point clouds has become an important topic in point cloud data processing and transmission line management. In this paper, we present an automated and versatile framework for power line classification, which consists of four steps:power line candidate point filtering, multi-scale neighborhood type selection, feature extraction based on geospatial structure, and SVM classification. To comprehensively evaluate the proposed algorithm, we calculate each point's feature based on eight levels of scales. Two datasets demonstrate that classification results reach up to 97%, 94%, and 93% in terms of precision rate, recall rate and overall quality. The whole processing time also decreases from 366 s, 256 s to 274 s, 160 s, respectively. Experimental results show that this method can achieve high-precision classification of power lines in complex urban environment.

Key words: airborne LiDAR, urban power line, neighborhood selection, geospatial structure feature, power line classification

中图分类号: