[1] 徐涵秋. 基于谱间特征和归一化指数分析的城市建筑用地信息提取[J]. 地理研究, 2005, 24(2):311-320. [2] 孟瑜, 赵忠明, 彭舒,等. 基于谱问特征分析的城市建筑用地信息提取[J]. 测绘通报, 2008(12):36-38. [3] 江畅,何秀凤,严汝琳,等.基于极化SAR图像的建筑区提取方法研究[J].航天返回与遥感, 2017, 38(2):72-81. [4] 郑文武,邓运员,罗亮,等.一种传统民居遥感提取方法[J].测绘科学,2015,40(10):93-97. [5] 沈小乐,邵振峰,田英洁. 纹理特征与视觉注意相结合的建筑区提取[J].测绘学报, 2014, 43(8):842-847. [6] 何春阳, 曹鑫, 史培军,等. 基于Landsat7 ETM+全色数据纹理和结构信息复合的城市建筑信息提取[J]. 武汉大学学报(信息科学版), 2004, 29(9):800-804. [7] LÉCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc., 2012:1097-1105. [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of ICLR. San Diego:[s.n.],2015. [10] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [11] 何海清,杜敬,陈婷,等.结合水体指数与卷积神经网络的遥感水体提取[J].遥感信息,2017,32(5):82-86. [12] 徐逸之,李祥,周楠,等.基于全卷积网络的高分辨遥感影像目标检测[J].测绘通报, 2018(1):77-82. [13] HUANG B, ZHAO B, SONG Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment, 2018, 214(1):73-86. [14] ZHANG L P, ZHANG L F, DU B. Deep learning for remote sensing data:a technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):22-40. |