测绘通报 ›› 2020, Vol. 0 ›› Issue (9): 27-32,37.doi: 10.13474/j.cnki.11-2246.2020.0277

• 轨道交通前沿测绘技术研究与应用 • 上一篇    下一篇

地铁隧道结构机器视觉检测系统及应用分析

李军1, 朱国琦1, 樊晓东2, 杨维2, 黄震3   

  1. 1. 南宁轨道交通集团有限责任公司, 广西 南宁 530029;
    2. 宽衍(北京)科技发展有限公司, 北京 100089;
    3. 广西大学土木建筑工程学院, 广西 南宁 530004
  • 收稿日期:2020-06-15 修回日期:2020-07-16 出版日期:2020-09-25 发布日期:2020-09-28
  • 通讯作者: 樊晓东。E-mail:619631361@qq.com E-mail:619631361@qq.com
  • 作者简介:李军(1980-),男,高级工程师,主要从事城市轨道交通运营管理工作。E-mail:83666545@qq.com

Machine vision inspection system of subway tunnel structure and its application analysis

LI Jun1, ZHU Guoqi1, FAN Xiaodong2, YANG Wei2, HUANG Zhen3   

  1. 1. Nanning Rail Transit Group Co., Ltd., Nanning 530029, China;
    2. Kuanyan(Beijing) Technology Development Co., Ltd., Beijing 100089, China;
    3. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Received:2020-06-15 Revised:2020-07-16 Online:2020-09-25 Published:2020-09-28

摘要: 本文使用一种地铁隧道快速机器视觉检测系统,该系统采用深度学习算法,有效识别了采集图像中的病害特征。其软件平台能够方便隧道管理者实时查看和跟踪隧道病害信息。该检测系统应用于南宁地铁的检测,取得了较好的检测效果,能精确地识别隧道的裂缝、剥落和渗漏等病害,并从图像效果、定位精度、检测效率、识别率和检测精度4个方面与人工检测方法进行了对比分析。结果表明,该系统的图像采集效果显著优于人工方法;检测速度可达30 km/h;识别裂缝、剥落和渗漏的识别精度分别可达89%、100%和94%;能够识别面积为100 mm2的表面缺陷和裂缝宽度>0.2 mm的裂缝。

关键词: 地铁隧道, 机器视觉, 图像处理, 快速检测, 应用分析

Abstract: This paper presents a rapid machine vision detection system for subway tunnel. The system uses deep learning algorithm to effectively identify the disease features in the collected images. The software platform can facilitate tunnel managers to view and track tunnel disease information in real time. The detection system has been applied to the detection of Nanning metro, and has achieved good detection results. It can accurately identify the tunnel defects such as cracks, spalling and leakage. It also compares with the manual detection method in terms of image effect, positioning accuracy, detection efficiency, recognition rate and detection accuracy. The results show that the image acquisition effect of the system is significantly better than that of the manual method; the detection speed can reach 30 km/h; the recognition accuracy of crack, spalling and leakage can reach 89%, 100% and 94% respectively; the surface defects with an area of 100 mm2 and cracks with a width of more than 0.2 mm can be identified.

Key words: subway tunnel, machine vision, image processing, rapid detection, application analysis

中图分类号: