[1] HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time seriesanalysis for measuring crustal deformation[J]. Tectonophysics, 2012,514(1):1-13. [2] MASSONNET D, ROSSI M, CARMONA C, et al.The displacement field of the Landersearthquake mapped by radar interferometry[J]. Nature,1993, 364(6433):138-142. [3] WANG H, GE L, XU C, et al. 3-D coseismic displace-ment field of the 2005 Kashmir earthquake inferred from satellite radar imagery[J]. Earth, planets space, 2007, 59(5):343-349. [4] WANG H, XU C, GE L. Coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi, Tibet, earthquake from InSAR measurements[J]. Journal of Geodynamics, 2007, 44(3):200-212. [5] HENDERSON S T, PRITCHARD M E. Time-dependent deformation of Uturuncu volcano, Bolivia, constrained by GPS and InSAR measurements and implications for source models[J]. Geosphere, 2017, 13(6):1834-1854. [6] LU Z, FIELDING E, PATRICK M R, et al. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar:the 1997 eruption of Okmok volcano, Alaska[J]. Geoscience and Remote Sensing, 2003, 41(6):1428-1436. [7] MASTERLARK T, HANEY M, DICKINSON H, et al. Rheologic and structural controls on the deformation of Okmok volcano, Alaska:FEMs, InSAR, and ambient noise tomography[J]. Journal of Geophysical Research Solid Earth, 2010, 115(B02409):1-22. [8] NG H M, GE L, LI X, et al. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR[J]. International Journal of Applied Earth Observations & Geoinformation, 2012, 18:232-242. [9] NG H M, GE L, LI X, et al. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interfero-metry[J]. Journal of Geodesy, 2012, 86(6):375-392. [10] NG H M, GE L, YAN L, et al. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia[J]. Engineering Geology, 2010, 115(1-2):1-15. [11] ZHAO C, LU Z, ZHANG Q, et al. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124(9):348-359. [12] YAGUE-MARTINEZ N, PRATS-IRAOLA P, GONZALEZ F R, et al. Interferometric Processing of Sentinel-1 TOPS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2220-2234. [13] HAVIVI S, SCHVARTZMAN I, MAMAN S, et al. Com-bining TerraSAR-X and Landsat images for emergency response in urban environments[J]. Remote Sensing, 2018, 10(5): 802. [14] ARAB-SEDZE M, HEGGY E, BRETAR F, et al. Quan-tification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements[J]. Remote Sens Environ, 2014, 152:202-216. [15] TOUZI R, LOPES A, BRUNIQUEL J, et al. Coherence estimation for SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149. [16] FERRETTI A, MONTIGUARNIERI A, PRATI C, et al. InSAR principles: guidelines for SAR interferometry processing and interpretation[J]. Journal of Financial Stability,2007, 10(10): 156-162. [17] CARLSON T N, GILLIES R R, PERRY E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994, 9(1): 161-173. [18] ROSEN P A, GURROLA E, SACCO G F, et al. The InSAR scientific computing environment[C]//Proceedings of the 9th European Conference on Synthetic Aperture Radar. [S.l.]: VDE, 2012. |