测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 69-74,121.doi: 10.13474/j.cnki.11-2246.2023.0330

• 学术研究 • 上一篇    下一篇

融合CNN和CapsNet的Wi-Fi室内定位方法

张天颖, 史明泉, 崔丽珍, 秦岭   

  1. 内蒙古科技大学信息工程学院, 内蒙古 包头 014010
  • 收稿日期:2023-02-15 出版日期:2023-11-25 发布日期:2023-12-07
  • 通讯作者: 史明泉。E-mail:smq9669@126.com
  • 作者简介:张天颖(1999—),女,硕士,研究方向为室内定位。E-mail:2660339365@qq.com
  • 基金资助:
    国家自然科学基金(62161041);内蒙古自治区高等学校科学研究项目(NJZY22438)

A Wi-Fi indoor positioning method integrating CNN and CapsNet

ZHANG Tianying, SHI Mingquan, CUI Lizhen, QIN Ling   

  1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
  • Received:2023-02-15 Online:2023-11-25 Published:2023-12-07

摘要: 针对基于位置指纹的Wi-Fi室内定位方法定位精度低的问题,本文提出了一种融合卷积神经网络(CNN)和胶囊网络(CapsNet)的Wi-Fi室内定位算法模型,记为CNN-CapsNet。首先将采集的RSSI时间序列信息,生成位置指纹图像数据集;然后通过由卷积层和池化层构成的CNN初级特征提取器,完成定位图像到初级特征图的转换;最后将初级特征图输入到CapsNet中,获得最终的分类结果。试验结果表明,在不同的向量维度,迭代次数等参数下,该模型的准确率高达99.99%,损失函数值低至0.009 91,优于其他的传统定位方法。

关键词: 室内定位, RSSI, 胶囊网络, 卷积神经网络, 图像分类

Abstract: Aiming at the problem of low positioning accuracy of Wi-Fi indoor positioning method based on location fingerprint, this paper proposes a Wi-Fi indoor positioning algorithm model that integrates convolutional neural network(CNN)and capsule network(CapsNet) which is recorded as CNN-CapsNet. Firstly, the collected RSSI time series information is used to generate the location fingerprint image dataset. Then the CNN primary feature extractor composed of convolution layer and pooling layer is used to complete the conversion from the positioning image to the primary feature map. Finally, the primary feature map is input into CapsNet to obtain the final classification result. The experimental results show that the accuracy of this model is as high as 99.99% and the loss function is as low as 0.009 91 under different vector dimensions and iteration times, which is better than other traditional positioning methods.

Key words: indoor positioning, received signal strength indicator, capsule network, convolutional neural network, image classification

中图分类号: