测绘通报 ›› 2023, Vol. 0 ›› Issue (4): 150-153,158.doi: 10.13474/j.cnki.11-2246.2023.0120

• 技术交流 • 上一篇    下一篇

一种基于位置识别的室内场景点云配准方法

牛学超1,2   

  1. 1. 广州市城市规划勘测设计研究院, 广东 广州 510060;
    2. 广东省城市感知与监测预警企业 重点实验室, 广东 广州 510060
  • 收稿日期:2022-05-05 发布日期:2023-04-25
  • 作者简介:牛学超(1996—),男,硕士,助理工程师,主要研究方向为三维激光点云数据处理。E-mail:987746174@qq.com
  • 基金资助:
    广东省城市感知与监测预警企业重点实验室基金(2020B121202019);广州市城市规划勘测设计研究院科技基金(RDI2210201040)

A registration method for indoor scenes point cloud based on place recognition

NIU Xuechao1,2   

  1. 1. Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China;
    2. Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou 510060, China
  • Received:2022-05-05 Published:2023-04-25

摘要: 针对现有方法在低重叠室内场景点云配准稳健性较差的问题,本文提出了一种基于位置识别的点云自配准方法。首先基于室内空间分割结果生成虚拟雷达观测位置,构建虚拟扫描;其次从虚拟扫描中提取全局特征描述符进行位置识别;然后利用位置识别结果确定重叠区域;最后计算重叠区域的转换参数,并根据刚体转换的特性获取最终的整体转换参数。试验结果表明,本文方法能够在低重叠的室内场景精确计算转换参数。

关键词: 点云配准, 位置识别, 全局特征描述符, 虚拟雷达

Abstract: The existing solutions have low robustness for registration between low overlap point clouds in indoor scenes. In this paper, a robust place recognition based registration algorithm is proposed. Virtual scans are generated based on the result of disjoint spaces. Global feature descriptors are extracted from virtual scans subsequently.Then the overlap area can be determined using place recognition. At last, the transformation can be obtained accurately by aligning the point cloud of overlap area. The experiments show that the proposed solution estimate accurately the transformation parameter for low overlap indoor point clouds.

Key words: registration, place recognition, global feature descriptor, virtual LiDAR

中图分类号: