测绘通报 ›› 2023, Vol. 0 ›› Issue (6): 75-81.doi: 10.13474/j.cnki.11-2246.2023.0171

• 学术研究 • 上一篇    下一篇

UAV影像点云支持下的林地精细DEM建立方法

何荣, 白伟森, 代震, 翟慧鹏   

  1. 河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
  • 收稿日期:2022-08-31 修回日期:2022-11-29 发布日期:2023-07-05
  • 通讯作者: 白伟森。E-mail:bws207918@163.com
  • 作者简介:何荣(1975-),男,教授,主要从事矿山开采沉陷研究。E-mail:hero@hpu.edu.cn
  • 基金资助:
    国家自然科学基金 (41671057);河南省科技攻关项目(172102310572);河南省高等学校重点科研项目(18B420003);河南理工大学基本科研业务费专项(NSFRF170909)

Establishment method of woodland refinement of DEM based on dense point cloud of UAV images

HE Rong, BAI Weisen, DAI Zhen, ZHAI Huipeng   

  1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2022-08-31 Revised:2022-11-29 Published:2023-07-05

摘要: 针对无人机摄影测量建立DEM时易受植被影响导致地形缺失的问题,本文提出了一种融合不同航线影像地面点云建立林地精细DEM的方法。首先,按无人机航线将影像分类,并分别提取地面点云,然后采用反距离权重约束的ICP算法构建融合地面点云,最后融合地面点云建立林地精细DEM。结果表明,融合地面点云数量为2 182 740个,密度为9612个/m2;融合地面点云建立的DEM中误差为7.3 cm,与实际地形的相关系数达到0.925;在不同植被区内,融合后地面点云建立的DEM中误差均在10 cm内,与实际地形的相关系数均在0.89以上。试验验证了本文方法的可行性和适用性,可为无人机摄影测量建立林地精细DEM提供参考。

关键词: 影像点云, 点云融合, 反距离权重, 精细DEM, 精度评定

Abstract: Aiming at the problem that UAV photogrammetry is susceptible to vegetation influence and terrain loss when establishing DEM, this paper proposes a method to establish refinement of DEM in woodland based on ground point clouds fusing images of different routes. Firstly, the images are classified according to the UAV route, and the ground point clouds are extracted separately.Then the ICP algorithm with inverse distance weight constraint is used to construct the fused ground point cloud. Finally,the woodland refinement of DEM is established based on the fused ground point cloud. The results show that the number of fused ground point clouds is 2 182 740, and the density is 9612/m2. The error in DEM established based on fused ground point cloud is 7.3 cm, and the correlation coefficient with the actual terrain reaches 0.925, and in different vegetation areas, the error in the DEM established by the fused ground point cloud is within 10 cm, and the correlation coefficient with the actual terrain is above 0.89. Experiments verify the feasibility and applicability of the proposed method, and provide a reference for the establishment of fine DEM of woodland by UAV photogrammetry.

Key words: image dense point cloud, fusion of point cloud, IDW algorithm, refinement of DEM, precision analysis

中图分类号: