测绘通报 ›› 2018, Vol. 0 ›› Issue (11): 40-45.doi: 10.13474/j.cnki.11-2246.2018.0347

• 学术研究 • 上一篇    下一篇

一种基于三维特征点集的激光雷达与相机配准方法

俞德崎, 李广云, 王力, 李帅鑫, 宗文鹏   

  1. 信息工程大学, 河南 郑州 450001
  • 收稿日期:2018-05-14 出版日期:2018-11-25 发布日期:2018-11-29
  • 作者简介:俞德崎(1994-),男,硕士生,主要研究方向为组合导航与数据融合。E-mail:yudeqi_maybe@163.com
  • 基金资助:

    国家自然科学基金(41274014;41501491)

Calibration of LiDAR and Camera Based on 3D Feature Point Sets

YU Deqi, LI Guangyun, WANG Li, LI Shuaixin, ZONG Wenpeng   

  1. Information Engineering University, Zhengzhou 450001, China
  • Received:2018-05-14 Online:2018-11-25 Published:2018-11-29

摘要:

针对无人驾驶技术中的激光雷达与相机的配准问题,提出了基于两传感器数据中对应的三维特征点集来求解激光雷达与相机配准参数的配准方法。首先,利用ArUco标签确定纸板标志与相机坐标系的关系,在纸板尺寸和位置已知的情况下可得纸板角点在相机坐标系下的坐标,基于随机抽样一致算法提取激光雷达点云中的纸板边缘,以边缘交点为纸板角点,从而建立两组角点的对应关系;然后,利用Kabsch算法求解激光雷达与相机的最优配准参数;最后,将求得配准参数与人工测量结果作比较,验证该方法的可行性。为了进一步确定方法的准确性,将该方法用于两台相机的配准,通过相机点云数据融合的质量来评价该方法的准确性。试验结果表明,基于对应三维特征点集的配准方法可以实现激光雷达与相机配准参数的准确求解,同时该方法也适用于两台或多台相机的配准。

关键词: 配准, ArUco标签, 随机抽样一致算法, Kabsch算法, 点云融合

Abstract:

Aiming at the calibration of LiDAR and camera of driverless technology, this paper proposes an automatic calibration method based on 3D feature point sets of two sensors data. First, ArUco tags provide transform between the camera and the cardboard marker, the dimensions and location of the cardboard is known, the location of the corners can be calculated. RANSAC algorithme is used to fit edges on the points from the LIDAR, their intersection is calculated as corners, thus the two sets of point correspondences are found. Then, Kabsch algorithme is used to obtain the optimal calibration parameters between the LiDAR and the camera. Finally, we compare the optimal calibration parameters obtained from calculated against measured values using tape by a human to test the feasibility of our method. For further determine the accuracy of our method, we use our method to calibration of two cameras, the accuracy of the calibration parameters obtained is evaluated by the quality of the fusion point cloud data. The experimental results show that the automatic calibration method based on 3D feature point sets can realize the accurate solution of calibration parameters between LiDAR and camera, this method could be used to automatic calibration of two or more cameras.

Key words: calibration, ArUco tag, RANSAC algorithme, Kabsch algorithme, fusion point cloud

中图分类号: