测绘通报 ›› 2024, Vol. 0 ›› Issue (2): 45-50.doi: 10.13474/j.cnki.11-2246.2024.0208

• 学术研究 • 上一篇    下一篇

基于特征优选的喀斯特地区覆被信息提取及精度分析

廖超明1, 云子恒1, 罗恒2, 韦媛媛1, 凌子燕3, 潘桂颖4   

  1. 1. 南宁师范大学自然资源与测绘学院, 广西 南宁 530001;
    2. 广西壮族自治区自然资源遥感院 监测中心, 广西 南宁 530200;
    3. 南宁师范大学地理科学与规划学院, 广西 南宁 530001;
    4. 北部湾环境演变与资源利用教育部重点实验室, 广西 南宁 530001
  • 收稿日期:2023-05-30 出版日期:2024-02-25 发布日期:2024-03-12
  • 通讯作者: 潘桂颖。E-mail:pan_gui_ying@hotmail.com
  • 作者简介:廖超明(1975—),男,博士,教授级高级工程师,研究方向为GNSS精密数据处理、3S技术在土地资源管理中的应用。E-mail:liaochaoming@nnnu.edu.cn
  • 基金资助:
    国家自然科学基金(42164001;420013311;42101369);2022年本科教育教学重点项目(602030389173301)

Cover information extraction and precision analysis in Karst area based on feature optimization

LIAO Chaoming1, YUN Ziheng1, LUO Heng2, WEI Yuanyuan1, LING Ziyan3, PAN Guiying4   

  1. 1. Nanning Normal University School of Natural Resources and Mapping, Nanning 530001, China;
    2. Monitoring Center of Natural Resources Remote Sensing Institute of Guangxi Zhuang Autonomous Region, Nanning 530200, China;
    3. Nanning Normal University School of Geosciences and Planning, Nanning 530001, China;
    4. Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning 530001, China
  • Received:2023-05-30 Online:2024-02-25 Published:2024-03-12

摘要: 喀斯特地区因地貌特征复杂且不规则,土地利用分类精度偏低。本文以广西南宁市上林县为研究区,结合多源数据,提取33个特征变量,并设计7种特征组合方案,探讨加入地形、纹理、红边指数及雷达特征后对喀斯特地区地类提取的作用。结合随机森林袋外(OOB)数据误差和递归特征消除法进行特征优选,同时引入第三次全国国土调查数据与优选后的分类结果进行对比,以评价其准确性与可靠性。研究结果表明:①7种分类方案中,传统的光谱特征加指数特征分类精度最低,在此基础上加入地形、纹理、红边指数及雷达特征均能提高分类精度,其中纹理特征带来的效果最为显著;②通过特征优选将特征维数由33个降低至23个,分类精度达到了最高,总体精度为0.909 8,Kappa系数为0.884 9,同时降低了模型复杂度,提高了运算效率;③经特征优选后的分类结果与“三调数据”进行对比,整体准确率为0.852 5,符合研究区的实际情况。本文提出的基于特征优选的分类方法可为喀斯特地区覆被信息提取提供技术支撑与理论参考。

关键词: 喀斯特地貌, 土地利用, 多源数据, 特征优选, 精度评价

Abstract: Karst areas have complex and irregular geomorphological features, which makes the accuracy of land use classification low. In this paper, Shanglin county in Nanning city is taken as the study area, and 33 feature variables are extracted and seven feature combination schemes are designed by combining multi-source data to explore the role of adding topography, texture, red-edge index and radar features on the extraction of land classes in karst areas. Combining the random forest OOB data error and recursive feature elimination method for feature optimisation, meanwhile introducing the third national land survey data to compare with the optimised classification results in order to evaluate its accuracy and reliability. The results of the study indicate that: ①Among the seven classification schemes, the traditional spectral features plus index features have the lowest classification accuracy, and the addition of topographic, texture, red-edge index and radar features can improve the classification accuracy, among which the texture features bring the most significant effect. ②The number of feature dimensions is reduced from 33 to 23 through feature optimisation, so that the classification accuracy reaches the highest, with an overall accuracy of 0.909 8, the overall accuracy is 0.909 8, and the Kappa coefficient is 0.884 9, which also reduces the complexity of the model and improves the computational efficiency. ③The classification results after feature selection are compared with the "three-tone data", and the overall accuracy is 0.852 5, which is in line with the actual situation of the study area. The classification method based on feature selection proposed in this paper can provide technical support and theoretical reference for the extraction of cover information in karst areas.

Key words: Karst landscape, land use, multi-source data, feature optimization, accuracy evaluation

中图分类号: