测绘通报 ›› 2024, Vol. 0 ›› Issue (5): 29-34,40.doi: 10.13474/j.cnki.11-2246.2024.0506

• 学术研究 • 上一篇    下一篇

协同全极化SAR与光学遥感的潮沟精细提取方法

李淑1,2, 李鹏1,2, 李振洪3, 王厚杰1,2   

  1. 1. 中国海洋大学海洋地球科学学院河口海岸带研究所海底科学与探测技术教育部重点实验室, 山东 青岛 266100;
    2. 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 山东 青岛 266061;
    3. 长安大学地质工程与测绘学院, 陕西 西安 710054
  • 收稿日期:2023-10-16 发布日期:2024-06-12
  • 通讯作者: 李鹏。E-mail:pengli@ouc.edu.cn
  • 作者简介:李淑(1998—),女,硕士生,研究方向为海岸带遥感。E-mail:ls3668@stu.ouc.edu.cn
  • 基金资助:
    国家自然科学基金(42041005-4)

A fine extraction method for tidal channels with fully polarized SAR and optical remote sensing

LI Shu1,2, LI Peng1,2, LI Zhenhong3, WANG Houjie1,2   

  1. 1. Key Lab of Submarine Geosciences and Prospecting Technology, Institute of Estuarine and Coastal Zone, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
    2. Laboratory of Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China;
    3. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China
  • Received:2023-10-16 Published:2024-06-12

摘要: 潮沟系统是粉砂淤泥质潮滩中最为活跃的地貌单元,受潮汐周期性冲刷、人类活动和海平面上升等因素的影响,大范围潮沟精细监测具有挑战性。本文提出了一种基于高分三号全极化合成孔径雷达(SAR)与PlanetScope多光谱遥感影像的潮沟探测和提取方法。通过融合光谱、指数、极化、纹理等特征,构建最优特征集,结合最大似然法、支持向量机及随机森林算法开展协同分类,获得了黄河口3m分辨率的潮沟精细分布信息。结果表明,该方法的总体精度达到99%,F1值为0.98,提取结果优于单一数据源。本文方法有望为河口海岸带潮沟制图提供一种经济、有效的选择,有助于定量描述潮沟形态演变、稳定性及驱动因素。

关键词: 潮沟, 全极化SAR, 多光谱遥感, 协同分类, 特征提取

Abstract: The tidal channel system is the most active geomorphic unit in the chalky-silt tidal flats. Due to the influence of periodic tidal erosion, human activities, and sea level rise, it is challenging to monitor tidal channel in a large scale. In this study, a method of tidal channel detection and extraction based on C-band GF-3 fully polarized synthetic aperture radar (SAR) and PlanetScope multispectral remote sensing data is proposed. Through the fusion of spectral, index, polarization, texture and other features, the optimal feature set was constructed, and the maximum likelihood method, support vector machine and random forest algorithm were combined to carry out synergetic classification, and the fine distribution information of the tidal channel at the Yellow River estuary with 3m resolution was obtained. The results show that the overall accuracy of the method is 99%, F1 value is 0.98, and the extraction result is better than that of a single data source. This study is expected to provide a cost-effective alternative for the tidal channel mapping in estuarine and coastal areas, and help to quantitatively describe the morphological evolution, stability and driving factors.

Key words: tidal channel, full polarization SAR, multi-spectral remote sensing, synergetic classification, feature extraction

中图分类号: