测绘通报 ›› 2024, Vol. 0 ›› Issue (5): 96-102.doi: 10.13474/j.cnki.11-2246.2024.0517

• 学术研究 • 上一篇    下一篇

融合IFC语义信息与几何相似性的BIM构件实例信息提取方法

贺彪1,2,3, 唐骜巍1,2,3, 蒯希1,2,3, 徐海1,2,3, 肖佳栋1,2,3   

  1. 1. 深圳大学建筑与城市规划学院智慧城市研究院, 广东 深圳 518060;
    2. 自然资源部城市国土资源监测 与仿真重点实验室, 广东 深圳 518060;
    3. 深圳市城市数字孪生技术重点实验室, 广东 深圳 518060
  • 收稿日期:2023-09-21 发布日期:2024-06-12
  • 通讯作者: 蒯希。E-mail:kuaixi@szu.edu.cn
  • 作者简介:贺彪(1983—),男,博士,副教授,研究方向为智慧城市信息平台技术、三维空间数据处理与分析、BIM数据融合处理。E-mail:hebiao@szu.edu.cn
  • 基金资助:
    自然资源部城市国土资源监测与仿真重点实验室开放基金(KF-2021-06-123);国家重点研发计划(2022YFC3800604)

An approach for extracting BIM component instance information integrating IFC semantic data and geometric similarity

HE Biao1,2,3, TANG Aowei1,2,3, KUAI Xi1,2,3, XU Hai1,2,3, XIAO Jiadong1,2,3   

  1. 1. Research Institute for Smart Cities, School of Architecture and Urban Planning, Shenzhen 518060, China;
    2. Key Laboratory of Urban Land and Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518060, China;
    3. Shenzhen Key Laboratory of Digital Twin Technologies for Cities, Shenzhen 518060, China
  • Received:2023-09-21 Published:2024-06-12

摘要: 建筑信息模型(BIM)能够对建筑结构、部件组成及其业务语义属性进行准确表达,在智慧城市时空底板建设及建筑物“规、建、养、运”全生命周期数字化管理中发挥着重要的作用。BIM模型的数量级大、引用关系与层级结构复杂,增加了BIM构件实例信息的提取难度,从而导致目前的CIM平台难以直接利用BIM构件实例信息实现轻量化的数据传输、流畅的可视化及BIM分析计算。针对此问题,本文提出了一种融合IFC语义信息与几何相似性的BIM构件实例信息提取方法,在充分考虑IFC几何引用语义信息的基础上,使用ICP算法和豪斯多夫距离计算几何相似性,实现对BIM构件实例信息的精确提取;此外,还针对BIM场景中常见的拉伸体构件,提出了一种基于特殊拉伸体的实例信息快速提取方法;最后选取了5个不同BIM专业的试验示例数据进行详尽分析。试验结果显示,本文提出的BIM构件实例信息提取方法在各种示例数据中的文件平均压缩率为29.79%,能够显著地减小文件体积;在BIM构件实例信息提取能力方面,实现了79.41%的平均构件实例化率及22.47%的平均实体压缩率,且每个实例化构件平均包含的子构件数量高达49.24。本文方案可以充分提取IFC文件中的BIM构件实例信息,能够为海量BIM模型的轻量化提供强有力的技术支撑。

关键词: 智慧城市, BIM轻量化, 几何相似性, IFC语义信息, 实例化

Abstract: Building information modeling (BIM) accurately captures architectural structures,component compositions,and semantic attributes. It plays a crucial role in the digital management of smart cities' spatiotemporal frameworks and the entire building lifecycle,including planning,construction,maintenance,and operation. However,the massive data scale,complex reference relationships,and hierarchical structures of BIM models present challenges in extracting component instance information,hindering lightweight data transmission,seamless visualization,and BIM analysis within current city information modeling (CIM) platforms.To address this issue,we introduce an innovative approach that combines IFC semantics with geometric similarity. Utilizing ICP and the Hausdorff distance metric,we attain a high level of precision in extracting BIM component instances. Furthermore,we present a specialized method tailored to the extraction of common extruded components. Our comprehensive evaluation,encompassing five diverse BIM disciplines,demonstrates exceptional results,including a 29.79% reduction in file sizes,a 79.41% component instantiation rate,and a 22.47% solid compression rate. Impressively,each instantiated component encompasses an average of 49.24 sub-components. Our method excels in extracting IFC-based BIM component instances,facilitating the efficient transformation of extensive models.

Key words: smart city, BIM lightweighting, geometric similarity calculation, IFC semantic information, instance

中图分类号: