测绘通报 ›› 2024, Vol. 0 ›› Issue (8): 26-30.doi: 10.13474/j.cnki.11-2246.2024.0805

• 第八届测绘科学前沿技术论坛获奖论文 • 上一篇    

基于U-Net、U-Net++和Attention-U-Net网络的遥感影像水体提取

李振轩, 黄敏儿, 高飞, 陶庭叶, 吴兆福, 朱勇超   

  1. 合肥工业大学土木与水利工程学院, 安徽 合肥 230009
  • 收稿日期:2024-04-01 发布日期:2024-09-03
  • 通讯作者: 黄敏儿。E-mail:15256561612@163.com
  • 作者简介:李振轩(1991—),男,博士,讲师,研究方向为遥感影像智能解译、目标提取与变化检测。E-mail:zxli2019@hfut.edu.cn
  • 基金资助:
    国家自然科学基金(42104019);安徽省自然科学基金(2208085QD105);中央高校基本科研务费专项资金(JZ2021HGTA0167)

Remote sensing image water body extraction based on U-Net, U-Net++ and Attention-U-Net networks

LI Zhenxuan, HUANG Miner, GAO Fei, TAO Tingye, WU Zhaofu, ZHU Yongchao   

  1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2024-04-01 Published:2024-09-03

摘要: 目前,深度学习在高分辨率遥感影像水体提取方面的应用已成为遥感领域的研究热点。其中基于U-Net网络的算法在水体提取中表现出较好的性能,但鲜有研究对不同U-Net网络算法在水体提取任务中的性能差异进行深入比较。因此,本文选择U-Net、U-Net++和Attention-U-Net 3种卷积神经网络,基于GID数据集,进行试验与定量分析。结果表明:U-Net++的训练精度最高,其次为U-Net、Attention-U-Net,三者分别为0.912、0.907、0.899;U-Net++的边缘提取能力优于其他两种网络;在分割不同类型水体和区分遥感影像中与水体区域相似的非水体区域上,U-Net++的提取效果显著,U-Net和Attention-U-Net易出现漏提现象,效果欠佳。

关键词: 水体提取, 高分辨率遥感影像, U-Net网络

Abstract: Currently, the application of deep learning in the extraction of water bodies from high-resolution remote sensing images has become a research hotspot in the remote sensing field. Among them, algorithms based on the U-Net network have demonstrated good performance in water body extraction. However, there is scarce research that provides in-depth and detailed comparisons of the performance differences of different U-Net network algorithms in water body extraction tasks. Therefore, this article selects three convolutional neural networks, named U-Net, U-Net++, and Attention-U-Net, and based on the GID dataset, draws conclusions through experiments and quantitative analysis. The results indicate that: U-Net++ achieves the highest training accuracy, followed by U-Net and Attention-U-Net, with accuracies of 0.912, 0.907, and 0.899 respectively. U-Net++ exhibits superior edge extraction capability compared to the other two networks. In segmenting different types of water bodies and distinguishing non-water areas similar to water bodies in remote sensing images, U-Net++ shows significantly better extraction results, while U-Net and Attention-U-Net are prone to omission errors and exhibit suboptimal performance.

Key words: water body extraction, high-resolution remote sensing imagery, U-Net

中图分类号: