测绘通报 ›› 2025, Vol. 0 ›› Issue (2): 53-57,76.doi: 10.13474/j.cnki.11-2246.2025.0210

• 学术研究 • 上一篇    下一篇

基于改进SVM算法的Sentinel-2A MSI遥感影像水体提取

李升海, 张俊, 唐海林   

  1. 贵州大学矿业学院, 贵州 贵阳 550025
  • 收稿日期:2024-06-20 发布日期:2025-03-03
  • 作者简介:李升海(2000—),男,硕士生,主要研究方向为遥感信息提取与反演。E-mail:lishenghai3277685445@gmail.com
  • 基金资助:
    贵州省省级科技计划(黔科合支撑[2022]一般204;黔科合基础-ZK[2024]-一般093)

Sentinel-2A MSI remote sensing image water extraction based on improved SVM algorithm

LI Shenghai, ZHANG Jun, TANG Hailin   

  1. College of Mining, Guizhou University, Guiyang 550025, China
  • Received:2024-06-20 Published:2025-03-03

摘要: 地表水体信息的准确提取对于水资源研究具有重要意义,本文以Sentinel-2影像为研究数据,贵州省贵阳市红枫湖为研究区域,提出了结合主成分分析(PCA)、随机森林(RF)和支持向量机(SVM)的改进SVM水体提取算法。首先,对原始波段进行PCA降维,并利用移动窗口对所得成分进行灰度共生矩阵(GLCM)纹理和小波纹理计算;然后,结合原始光谱数据基于RF进行特征优选;最后,选择纹理最佳窗口大小并基于SVM算法对湖泊水体进行提取。结果表明,本文方法的水体提取总体精度高于其他方法,其总体精度和Kappa系数分别达98.87%和98.49%,水体信息更加完整。

关键词: 水体提取, 支持向量机, 随机森林, 纹理特征, 移动窗口

Abstract: The accurate extraction of surface water information is of great significance for water resources research. In this paper, using the Sentinel-2 image for research data, we propose the improvement of the SVM water extraction algorithm by principal component analysis (PCA), random forest (RF) and support vector machine(SVM).Firstly, the dimension of the original band is reduced by PCA and the composition of gray level co-occurrence matrix (GLCM) texture and wavelet texture are calculated by using the moving window. Then, the original spectral data is used for feature optimization based on RF. Finally, the optimal texture calculation window is selected and the lake water is extracted based on the SVM algorithm. Results on the surface, the overall accuracy of this method is higher than that of other methods, and the overall accuracy and Kappa coefficient are 98.87% and 98.49% respectively, and the water information is more complete.

Key words: water extraction, support vector machine, random forest, texture features, mobile window

中图分类号: