[1] 中华人民共和国住房和城乡建设部.2023年城市建设统计年鉴[M].北京:中国统计出版社,2023. [2] MA Duo,FANG Hongyuan,WANG Niannian,et al.Automatic defogging,deblurring,and real-time segmentation system for sewer pipeline defects[J].Automation in Construction,2022,144:104595. [3] DIRKSEN J,CLEMENS F H L R,KORVING H,et al.The consistency of visual sewer inspection data[J].Structure and Infrastructure Engineering,2013,9(3):214-228. [4] VAN DER STEEN A J,DIRKSEN J,CLEMENS F H L R.Visual sewer inspection:detail of coding system versus data quality[J].Structure and Infrastructure Engineering,2014,10(11):1385-1393. [5] 李清泉,张德津,汪驰升,等.动态精密工程测量技术及应用[J].测绘学报,2021,50(9):1147-1158. [6] HEO G,JEON J,SON B.Crack automatic detection of CCTV video of sewer inspection with low resolution[J].KSCE Journal of Civil Engineering,2019,23(3):1219-1227. [7] XIE Qian,LI Dawei,XU Jinxuan,et al.Automatic detection and classification of sewer defects via hierarchical deep learning[J].IEEE Transactions on Automation Science and Engineering,2019,16(4):1836-1847. [8] 李清泉,谷宇,涂伟,等.利用管道胶囊进行排水管网协同检测的新方法[J].武汉大学学报(信息科学版),2021,46(8):1123-1130. [9] 李清泉,朱家松,李虹,等.基于漂流式胶囊机器人的管道快速检测系统[J].中国给水排水,2021,37(10):126-132. [10] 朱家松,马天柱,杨昊坤,等.基于视觉注意力机制的下水管病害识别方法[J].激光与光电子学进展,2022,59(18):1815001. [11] PHAM T H,LI Xianqi,NGUYEN K D.seUNet-trans:a simple yet effective UNet-transformer model for medical image segmentation[J].IEEE Access,2024,12:122139-122154. [12] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[M]// Proceedings of 2015 Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.Cham:Springer International Publishing,2015:234-241. [13] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of 2018 Computer Vision and Pattern Recognition.Salt Lake city:[s.n.],2018:7132-7141. [14] JOCHER G.YOLOv5:minor version 6.0[EB/OL].(2021-10-12)[2023-06-22].https://github.com/ultralytics/yolov5/releases/tag/v6.0. [15] ZHENG Zhuoran,REN Wenqi,CAO Xiaochun,et al.Ultra-high-definition image dehazing via multi-guided bilateral learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:16180-16189. |