测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 55-61.doi: 10.13474/j.cnki.11-2246.2025.0610

• 学术研究 • 上一篇    

基于二次平滑和特征加权的高光谱图像分类

许淇, 杨嘉葳, 王继燕   

  1. 西南石油大学土木工程与测绘学院, 四川 成都 610500
  • 收稿日期:2024-10-24 发布日期:2025-07-04
  • 通讯作者: 杨嘉葳。E-mail:yangjw0123@126.com
  • 作者简介:许淇(2000—),男,硕士生,主要研究方向为高光谱图像分类。E-mail:2900788127@qq.com
  • 基金资助:
    西南石油大学科研“启航计划”项目(2019QHZ020);国家自然科学基金联合项目(41701428)

Hyperspectral image classification based on two-step smoothing and feature weighting

XU Qi, YANG Jiawei, WANG Jiyan   

  1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
  • Received:2024-10-24 Published:2025-07-04

摘要: 针对多种基于图像滤波的空谱联合分类方法在去噪的同时难以保留图像弱边缘的问题,本文提出了一种基于二次平滑和特征加权的高光谱图像分类方法。首先通过最小最大规范化对原始高光谱图像进行预处理,其次采用主成分分析对高光谱图像进行降维,再次运用加窗域变换递归滤波在得到弱化噪声的特征图像的同时保留弱边缘,然后通过L0梯度最小化对特征图像进行二次平滑进一步抑制噪声并增强边缘,并基于方差对特征图像进行加权,最后采用支持向量机进行分类。在两个数据集上进行试验,该方法的分类精度相比基于光谱特征的方法分别提升了14.06%和25.75%,相比于该领域多种滤波算法分别提升0.76%~4.3%和1.5%~5.69%,且分类结果更能反映真实地物类别。

关键词: 高光谱图像分类, 主成分分析, 加窗域变换递归滤波, L0梯度最小化, 特征加权

Abstract: A hyperspectral image classification method based on two-step smoothing and feature weighting is proposed to address the problem of various image filtering based spatial spectral joint classification methods being difficult to preserve weak edges of the image while denoising. Firstly, the original hyperspectral image is preprocessed by minimum maximum normalization, and then principal component analysis is used to reduce the dimensionality of the hyperspectral image. Next, using windowed domain transformation recursive filtering to obtain feature images with weakened noise while preserving weak edges, and then smoothing the feature images again through L0 gradient minimization to further suppress noise and enhance edges. After that, each feature image is weighted by variance. Finally, support vector machine is used for classification. Experiments were conducted on two datasets, and the classification accuracy of this method improved by 14.06% and 25.75% compared to spectral feature-based methods, and by 0.76%~4.3% and 1.5%~5.69% compared to various filtering algorithms in this field. Moreover, the classification results better reflect the true land cover categories.

Key words: hyperspectral image classification, principal component analysis, windowed domain transform recursive filtering, L0 gradient minimization smoothing, feature weighting

中图分类号: