[1] HAURUM J B,MOESLUND T B.A survey on image-based automation of CCTV and SSET sewer inspections[J].Automation in Construction,2020,111:103061. [2] 刘春明.城市道路塌陷成因分析与对策[J].城市勘测,2018(S1):184-187. [3] XU Zuxin,XU Jin,YIN Hailong,et al.Urban river pollution control in developing countries[J].Nature Sustainability,2019,2:158-160. [4] KUMAR S S,ABRAHAM D M,JAHANSHAHI M R,et al.Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks[J].Automation in Construction,2018,91:273-283. [5] 王俊岭,邓玉莲,李英,等.排水管道检测与缺陷识别技术综述[J].科学技术与工程,2020,20(33):13520-13528. [6] 许铁林,廖立国,周昌林.基于深度学习的复杂城市排水管道缺陷智能识别系统[J].测绘通报,2024(S2):37-41. [7] 苏常旺,胡少伟,张海丰,等.基于改进YOLOX算法的给水管道内缺陷智能识别与定位[J].测绘通报,2023(12):70-75. [8] YUSSUF A N,WEERASINGHE N P,CHEN Haosen,et al.Leveraging deep learning techniques for condition assessment of stormwater pipe network[J].Journal of Civil Structural Health Monitoring,2025,15(2):619-633. [9] 王守志,刘章,王冬,等.基于PP-YOLOE的城市排水管网缺陷检测及应用[J].中国给水排水,2024,40(18):130-136. [10] 周倩倩,刘汉林,陈维锋,等.基于DeepLabV3+的排水管道缺陷检测与语义分割[J].中国给水排水,2022,38(13):22-27. [11] PAN Gang,ZHENG Yaoxian,GUO Shuai,et al.Automatic sewer pipe defect semantic segmentation based on improved U-Net[J].Automation in Construction,2020,119:103383. [12] LI Mingze,LI Mingchao,REN Qiubing,et al.PipeTransUNet:CNN and Transformer fusion network for semantic segmentation and severity quantification of multiple sewer pipe defects[J].Applied Soft Computing,2024,159:111673. [13] MATTSSON J,HEDSTRÖM A,VIKLANDER M,et al.Fat,oil,and grease accumulation in sewer systems:comprehensive survey of experiences of Scandinavian municipalities[J].Journal of Environmental Engineering,2014,140(3):04014003. [14] HAURUM J B,MADADI M,ESCALERA S,et al.Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification[J].Automation in Construction,2022,144:104614. [15] DANG L M,WANG Hanxiang,LI Yanfen,et al.DefectTR:end-to-end defect detection for sewage networks using a transformer[J].Construction and Building Materials,2022,325:126584. [16] ZHU Lianghui,LIAO Bencheng,ZHANG Qian,et al.Vision mamba:efficient visual representation learning with bidirectional state space model[EB/OL].[2024-10-20].https://arxiv.org/abs/2401.09417v3. [17] BURT P J,ADELSON E H.The Laplacian pyramid as a compact image code[M]//Readings in Computer Vision.Amsterdam:Elsevier,1987:671-679. [18] HAURUM J B,MOESLUND T B.Sewer-ML:a multi-label sewer defect classification dataset and benchmark[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville,TN:IEEE,2021:13456-13467. |