测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 90-96.doi: 10.13474/j.cnki.11-2246.2025.0616

• 学术研究 • 上一篇    

基于Relief-F特征优选的滑坡影响因子提取及易发性建模分析

方露1, 邢尹2   

  1. 1. 江苏海事职业技术学院船舶与智能制造学院, 江苏 南京 211991;
    2. 苏州科技大学地理科学与测绘工程学院, 江苏 苏州 215009
  • 收稿日期:2024-11-21 发布日期:2025-07-04
  • 作者简介:方露(1983—),女,博士生,副教授,主要研究方向为滑坡形变安全监控。E-mail:seahudie@126.com
  • 基金资助:
    江苏海事职业技术学院科研项目重点课题(2023ZKzd01);江苏海事职业技术学院博士科研启动基金(2024BSKY24)

Extraction of landslide influence factors based on Relief-F feature preference and modeling analysis of susceptibility to landslides

FANG Lu1, XING Yin2   

  1. 1. School of Shipbuilding and Intelligent Manufacturing, Jiangsu Maritime Institute, Nanjing 211991, China;
    2. School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
  • Received:2024-11-21 Published:2025-07-04

摘要: 为解决现有滑坡易发性评价模型精度不足和单一决策模型局限性的问题,本文提出了一种集成智能组合算法优化RF的PSO-GA-RF集成模型。采用著名的过滤式特征选择方法——Relief-F算法,对滑坡致灾因子进行权重排序,剔除冗余特征,优化分类结果,从而减少了依赖主观判断提取影响因子的问题,降低了人为误差。PSO-GA-RF集成模型融合了多种算法的优势,对RF模型的参数进行优化,简化了参数选择的烦琐过程,减小了误差。试验结果表明,PSO-GA-RF集成模型在预测性能和效率上均优于RF和GA-RF模型。

关键词: 滑坡, 易发性, 影响因子, Relief-F, PSO-GA-RF

Abstract: In order to solve the problems of insufficient accuracy of the existing landslide susceptibility evaluation model and the limitations of a single decision-making model, an integrated PSO-GA-RF integrated model with an integrated intelligent combination algorithm to optimize RF is proposed. The well-known filtering feature selection method(Relief-F algorithm)is used to rank the weights of landslide-causing factors, eliminate redundant features, and optimize the classification results, thus reducing the problem of relying on subjective judgments to extract the influencing factors, and lowering the human error. The PSO-GA-RF integrated model combines the advantages of multiple algorithms to optimize the parameters of the RF model, which simplifies the tedious process of parameter selection and reduces the error. The experimental results show that the PSO-GA-RF integrated model outperforms the RF and GA-RF models in terms of prediction performance and efficiency.

Key words: landslide, vulnerability, influence factor, Relief-F, PSO-GA-RF

中图分类号: