测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 32-38.doi: 10.13474/j.cnki.11-2246.2026.0106

• 学术研究 • 上一篇    下一篇

基于图像特征匹配的车载与背包异源点云配准方法

许梦兵1,2, 钟若飞1, 仲雪婷1, 杨然1   

  1. 1. 首都师范大学资源环境与旅游学院, 北京 100048;
    2. 北京四维远见信息技术有限公司, 北京 100070
  • 收稿日期:2025-05-14 发布日期:2026-02-03
  • 通讯作者: 钟若飞。E-mail:zrfsss@163.com
  • 作者简介:许梦兵(1996—),男,博士,主要从事移动激光扫描点云智能处理方法研究。E-mail:2546616466@qq.com
  • 基金资助:
    国家自然科学基金(U22A20568);国家重点研发计划(2022YFB3904101)

A vehicle-borne and backpack cross-source point cloud registration method based on image feature matching

XU Mengbing1,2, ZHONG Ruofei1, ZHONG Xueting1, YANG Ran1   

  1. 1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
    2. Beijing GEO-Vision Information Technology Co., Ltd., Beijing 100070, China
  • Received:2025-05-14 Published:2026-02-03

摘要: 针对复杂场景中车载和背包异源点云之间的几何异质性和离散噪声,导致传统点云配准方法特征匹配歧义、计算复杂度高等问题,本文提出了一种基于图像特征匹配的车载与背包激光点云配准方法。该方法首先将配准划分为垂直对齐和水平对齐,垂直对齐以地面点为配准基元修正垂直方向位置偏差。然后,水平对齐通过俯视正投影将点云转换为二值图像,利用Lowe比值测试和梯度方向约束构建潜在匹配点对,进一步联合Huber鲁棒核函数设计了迭代重加权最小二乘(IRLS)优化框架,用于精准估计图像仿射变换参数。最后,联合地面对准和图像匹配参数实现点云粗配准,结合迭代最近点算法实现精配准。多组实测数据集验证结果表明,该方法能够有效克服异源点云之间的点密度变化等限制完成点云精确配准,旋转和平移误差整体均值低于0.000 5 rad和0.065 m,逐点误差均值低于0.06 m。在体素降采样方法的加持下,在保证配准精度的同时,显著提升了大体量点云配准效率,具有良好的实际应用价值。

关键词: 点云配准, 激光扫描, 车载和背包点云, 图像特征匹配

Abstract: To address the geometric heterogeneity and discrete noise between vehicle-borne and backpack cross-source point clouds in complex environments,which result in issues such as feature matching ambiguity and high computational complexity in traditional point cloud registration methods,this study proposes a registration approach based on image feature matching.The method divides the registration process into vertical alignment and horizontal alignment.Vertical alignment utilizes ground points as primitives to correct deviations in the vertical direction.For horizontal alignment,the point clouds are converted into binary images through top-down orthographic projection.Potential correspondences are then constructed using Lowe's ratio test combined with gradient orientation constraints.An optimization framework based on iteratively reweighted least squares (IRLS) is developed by integrating the Huber robust kernel function to precisely estimate the parameters of the image affine transformation.Coarse registration is achieved by combining ground-based alignment with image feature matching parameters,followed by fine registration using the iterative closest point (ICP) algorithm.Experimental results on multiple real world datasets demonstrate that the proposed method effectively overcomes challenges such as point density variation in cross-source point clouds and achieves accurate registration.The mean rotation and translation errors are below 0.000 5 rad and 0.065 m,respectively,and the average per point error is less than 0.06 m.Furthermore,with the support of voxel downsampling,the method significantly improves the efficiency of large scale point cloud registration while maintaining high accuracy,showing strong potential for practical application.

Key words: point cloud registration, laser scanning, vehicle-borne and backpack point clouds, image feature matching

中图分类号: