测绘通报 ›› 2018, Vol. 0 ›› Issue (1): 125-128.doi: 10.13474/j.cnki.11-2246.2018.0024

• 技术交流 • 上一篇    下一篇

改进的ELU卷积神经网络在SAR图像舰船检测中的应用

白玉1, 姜东民1, 裴加军2, 张宁2, 白郁2   

  1. 1. 沈阳航空航天大学电子信息工程学院, 辽宁 沈阳 110136;
    2. 上海航天电子技术研究所, 上海 201109
  • 收稿日期:2017-05-08 修回日期:2017-06-15 出版日期:2018-01-25 发布日期:2018-02-05
  • 通讯作者: 姜东民。E-mail:2834861086@qq.com E-mail:2834861086@qq.com
  • 作者简介:白玉(1969-),女,硕士,副教授,主要研究方向为信息获取与处理、嵌入式系统及应用。E-mail:1779683174@qq.com
  • 基金资助:
    国家自然科学基金(61671037)

Application of an Improved ELU Convolution Neural Network in the SAR Image Ship Detection

BAI Yu1, JIANG Dongmin1, PEI Jiajun2, ZHANG Ning2, BAI Yu2   

  1. 1. College of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110136, China;
    2. Space Electronic Technology Research Institute in Shanghai, Shanghai 201109, China
  • Received:2017-05-08 Revised:2017-06-15 Online:2018-01-25 Published:2018-02-05

摘要: 随着航天技术的发展,我国SAR载荷的探测体系呈现多种类、多分辨率的发展趋势。传统的检测识别方法很难适应多分辨率、多种类的SAR图像数据,从而需要寻求一种能从多分辨率的图像数据中提取有效特征的方法。智能化发展非常迅速,本文基于SAR图像的特点,提出了改进的ELU激活函数卷积神经网络的方法,建立了结合ELU激活函数和二次代价函数的深度学习模型。同时,在训练样本中建立样本特征与所在分类中心的距离函数,用模糊支持向量机(FSVM)对提取的特征进行了分类。试验结果表明,本文方法提高了SAR图像舰船检测的抗噪性,并且检测率达到了98.6%。

关键词: 合成孔径雷达, 卷积神经网络, 模糊支持向量机(FSVM), 代价函数, 分类函数

Abstract: With the development of space technology,the SAR load detection system in our country is showing the development trend of variousness and multi resolution.Since the traditional detection identification methods are difficult to satisfy the multiresolution and various characteristics of SAR image data,it's necessary to seek a different method to extract effective features from the multiresolution image data.For the rapidly development of intelligence,our scheme bases on the characteristics of SAR image proposes the convolution of the improved neural network method and utilizes ELU as an activation function to establish the deep learning model,which combined with the ELU and quadratic cost function.At the same time,based on the training sample, we establish the sample characteristics and centric distance functions,and then use the fuzzy support vector machine to classify the extracted characteristics.The experimental results show that the proposed method can improve the noise resistance of SAR image for the ship detection, and the detection rate can reach up to 98.6%.

Key words: synthetic aperture radar, the convolution neural network, fuzzy support vector machine, cost function, classification function

中图分类号: