测绘通报 ›› 2018, Vol. 0 ›› Issue (6): 122-125.doi: 10.13474/j.cnki.11-2246.2018.0189

• 技术交流 • 上一篇    下一篇

改进的SVR在大坝边坡位移预测中的应用

刘小生, 于良   

  1. 江西理工大学, 江西 赣州 341000
  • 收稿日期:2017-09-12 修回日期:2018-03-28 出版日期:2018-06-25 发布日期:2018-07-07
  • 作者简介:刘小生(1963-),男,博士,教授,主要从事大地测量学与测量工程的研究。E-mail:Lxs9103@163.com
  • 基金资助:
    国家自然科学基金(41561091)

Application of Improved SVR in Prediction of Side Slope Displacement of the Dam

LIU Xiaosheng, YU Liang   

  1. Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received:2017-09-12 Revised:2018-03-28 Online:2018-06-25 Published:2018-07-07

摘要: 针对传统支持向量机参数寻优的不足导致大坝边坡位移预测精度低的问题,本文提出了先粗搜,再多次细寻的改进网格参数寻优法。该法建立了SVR大坝边坡位移预测模型,并应用到大坝边坡位移预测。结果表明:改进的SVR大坝边坡位移预测模型的预测精度比传统支持向量机大坝边坡位移预测模型预测的精度高。

关键词: 改进网格法, 参数寻优, 支持向量机, 边坡预测

Abstract: Aiming at the problem of low prediction accuracy for side slope displacement of the dam caused by the insufficient of parameters optimization of traditional support vector machine (SVM),this paper proposed an improved grid parameter optimization method,which required to conduct a coarse search first,followed by several times of fine search.Based on the improved grid parameter optimization method,we established a prediction model for side slope displacement of SVR dam,and applied it in the prediction of side slope displacement.The results showed that the prediction model,established based on the improved method for predicting side slope displacement of SVR dam,had better prediction accuracy than the prediction model basing on traditional SVM.

Key words: improved grid method, parameter optimization, support vector machine, prediction of side slope

中图分类号: