测绘通报 ›› 2018, Vol. 0 ›› Issue (11): 63-68.doi: 10.13474/j.cnki.11-2246.2018.0351

• 学术研究 • 上一篇    下一篇

结合Canopy-K-means算法和出租车轨迹数据的公交车站预测方法

刘旭1, 陈云波2, 施昆1, 黄强3   

  1. 1. 昆明理工大学, 云南 昆明 650093;
    2. 昆明市规划编制与信息中心, 云南 昆明 650500;
    3. 成都理工大学, 四川 成都 610059
  • 收稿日期:2018-07-03 出版日期:2018-11-25 发布日期:2018-11-29
  • 通讯作者: 陈云波。E-mail:chybkm@qq.com E-mail:chybkm@qq.com
  • 作者简介:刘旭(1994-),男,硕士生,主要从事大数据分析及数据挖掘研究。E-mail:xuliu_ksy@126.com
  • 基金资助:

    国家自然科学基金(41604068)

Bus Stations Prediction Based on Canopy-K-means from Taxi GPS Data

LIU Xu1, CHEN Yunbo2, SHI Kun1, HUANG Qiang3   

  1. 1. Faculty of Land Resource Engineering Kunming University of Science and Technology, Kunming 650093, China;
    2. Kunming Planning and Information Center, Kunming 650093, China;
    3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
  • Received:2018-07-03 Online:2018-11-25 Published:2018-11-29

摘要:

公共交通轨迹的规划和站点确定是很困难的,而出租车的GPS数据用处很大,能够挖掘出人们活动的热点,因此利用出租车的GPS数据有助于规划公交站点。本文基于武汉市出租车轨迹数据,提出了一种基于Canopy-K-means算法的公共交通站点的预测方法。该方法通过引入Canopy-K-means改进聚类算法,得到客源地的出行热点区域,并将该区域和已有公交站点对比,分析公交站点存在的合理性;然后采用数理统计的方法,对客流量的时空分布特征进行研究。采用武汉市2014年7月31日—2014年8月12日2064台出租车的GPS坐标数据进行研究,试验结果表明:该方法能有效判断公交站点位置的合理性,为公交车发车频率提供辅助决策支持。

关键词: 出租车轨迹数据, Canopy-K-means算法, 公交车站, 公交车的发车频率

Abstract:

It is fairly hard to plan the path of public traffic and to determine the traffic site via traditional way. Additionally, by appropriately mining the useful GPS data of taxi, the human activity hotspot can be identified. Thus, mining the GPS data of taxi is helpful for planning bus station. For this reason, A Canopy-K-means method is proposed to predict public traffic stations. Firstly, the hot spots of the tourist destination can be got by applying the Canopy K-means algorithm. Further, comparing the hot spots with the existing bus stations, we analyze the rationality of the existence of the bus station. Then, the temporal and spatial distribution characteristics of passenger flow is studied by mathematical statistics. The GPS trajectory data of 2064 taxis in Wuhan from July 31, 2014 to August 12, 2014 are employing for experimental study and the results show that the proposed method can effectively distinguish the rationality of bus station location and provide auxiliary decision for the departure frequency of buses.

Key words: taxi track data, Canopy-K-means algorithm, bus stations prediction, departure frequency of buses

中图分类号: