测绘通报 ›› 2019, Vol. 0 ›› Issue (7): 96-99,146.doi: 10.13474/j.cnki.11-2246.2019.0227

• 技术交流 • 上一篇    下一篇

多源高分辨率DOM批量快速制作方法研究

张亚亚1, 马小计1,2, 周亦1,2   

  1. 1. 北京中色地科测绘有限公司, 北京 101300;
    2. 北京中色测绘院有限公司, 北京 100012
  • 收稿日期:2019-04-15 出版日期:2019-07-25 发布日期:2019-07-31
  • 作者简介:张亚亚(1986-),女,硕士,工程师,主要从事遥感监测、土地资源调查等工作。E-mail:498213841@qq.com

Research on rapid batch production method of multi-source high-resolution DOM

ZHANG Yaya1, MA Xiaoji1,2, ZHOU Yi1,2   

  1. 1. Beijing Sinotech Surveying and Mapping Co., Ltd., Beijing 101300, China;
    2. Beijing CNNC Institute of Surveying and Mapping Co., Ltd., Beijing 100012, China
  • Received:2019-04-15 Online:2019-07-25 Published:2019-07-31

摘要: 随着遥感数据在自然资源调查中的广泛应用,对多源高分辨率遥感影像“一张图”批量快速制作有了更高的需求。本文以广西壮族自治区北海市银海区作为试验区,利用Pixel Engine软件的“RS+GIS+Photoshop”算法,首先,针对多源高分辨率遥感卫星数据特点,制定相应的数据处理流程,自动化制作单景DOM;然后,以县级辖区为单位,批量快速制作县级辖区DOM;最后,从制作精度和速度两个方面,将该方法制作得到的DOM成果与人工处理成果进行对比,分析该方法的可行性,提出了一种快速、有效的多源高分辨率DOM制作方法。

关键词: 多源高分辨率, 遥感影像, DOM批量处理, 自动处理

Abstract: With the wide application of remote sensing data in natural resource surveys, there is a higher demand for mass production of "one map" of multi-source high-resolution remote sensing images. This paper takes Yinhai District, Beihai of Guangxi province as test area and uses the "RS + GIS + Photoshop" algorithm of Pixel Engine software. First, according to the characteristics of multi-source and high-resolution remote sensing satellite data, the corresponding data processing process is formulated, and the single scene DOM is produced automatically. Then, taking the county-level jurisdiction as the unit, the county-level jurisdiction DOM produced quickly in batches. Finally, from the two aspects of production precision and speed, the DOM results produced by this method are compared with the manual processing results. By analyzing the feasibility of the method, it turns out to be a fast and effective production method of multi-source high-resolution DOM.

Key words: multi-source high-resolution, remote sensing image, DOM automatic processing, batch processing

中图分类号: