[1] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8):939-953. [2] 贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(S1):274-278. [3] LIU C, JIANG K, YANG D, et al. Design of a multi-layer lane-level map for vehicle route planning[J]. Matec Web of Conferences, 2017, 124:03001. [4] SHIMADA H, YAMAGUCHI A, TAKADA H, et al. Implementation and evaluation of local dynamic map in safety driving systems[J]. Journal of Transportation Technologies, 2015,5(2):102-112. [5] JIANG K, YANG D, LIU C, et al. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles[J]. Engineering, 2019, 5(2):305-318. [6] JUNG C R, KELBER C R. Lane following and lane depar-ture using a linear-parabolic model[J]. Image and Vision Computing, 2005, 23(13):1192-1202. [7] ALY M. Real time detection of lane markers in urban streets[C]. Proceedings of IEEE Intelligent Vehicles Symposium.[S.l.]:IEEE, 2008. [8] ZHOU S, JIANG Y, XI J, et al. A novel lane detection based on geometrical model and Gabor filter[C]. Proceedings of IEEE Intelligent Vehicles Symposium.[S.l.]:IEEE, 2010. [9] 王永忠, 王晓云, 文成林. 梯度点对约束的结构化车道检测[J]. 中国图象图形学报, 2012, 17(6):657-663. [10] XU S, YE P, HAN S, et al. Road lane modeling based on RANSAC algorithm and hyperbolic model[C]. Proceeding of the 3rd International Conference on Systems and Informatics (ICSAI).[S.l.]:IEEE, 2016. [11] TIAN Y, GELERNTER J, WANG X, et al. Lane marking detection via deep convolutional neural network[J]. Neurocomputing, 2018, 280:46-55. [12] 田锦,张弛,王永森,等. 基于Mask R-CNN的地面标识检测[C]//中国计算机用户协会网络应用分会2018年第二十二届网络新技术与应用年会论文集.北京:北京联合大学北京市信息服务工程重点实验室,2018:59-62,86. [13] 王嘉雯. 基于Hough变换和神经网络的智能车辆车道线识别[D]. 北京:北京工业大学, 2018. [14] LI W, QU F, LIU J, et al. A lane detection network based on IBN and attention[J]. Multimedia Tools and Applications, 2020, 79(23):16473-16486. [15] HOANG T M, NAM S H, PARK K R. Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning[J]. IEEE Access, 2019, 7:109817-109832. [16] 王雅琦. 无人机低空高分辨率影像道路提取方法研究[D]. 锦州:渤海大学, 2018. [17] 孙海燕. 低层特征与高层语义知识结合的城市道路识别方法[D]. 北京:北方工业大学, 2018. [18] 李磊. 利用遥感影像和点云数据的道路提取方法研究[D]. 郑州:信息工程大学, 2018. [19] 黄昕. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉:武汉大学, 2009. [20] MIAO Z, SHI W, ZHANG H, et al. Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):583-587. [21] SHI W, MIAO Z, DEBAYLE J. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3359-3372. [22] 蒋星详, 肖莉. 一种多特征融合的高分辨率遥感影像道路中心线提取算法[J]. 测绘地理信息, 2019, 44(4):98-101. [23] 郑欣蕊,王云鹏,余贵珍,等. 基于图像连通区域特征的低空航拍图车道线识别算法[C]//第八届中国智能交通年会优秀论文集——智能交通与安全.北京:电子工业出版社,,2013:39-45. [24] 张世强, 王贵山. 基于高分辨率遥感影像的车道线提取[J]. 测绘通报, 2019(12):22-25. |