[1] 刘纪远, 张增祥, 张树文,等. 中国土地利用变化遥感研究的回顾与展望——基于陈述彭学术思想的引领[J]. 地球信息科学学报, 2020, 22(4):680-687. [2] LAMBIN E F, GEIST H. Land-use and land-cover change:Local processes and global impacts[M]. Berlin:Springer, 2006. [3] 陈玲,贾佳,王海庆.高分遥感在自然资源调查中的应用综述[J].国土资源遥感,2019,31(1):1-7. [4] 王涛涛,刘龙威,崔秉良.基于多源地理信息大数据的图斑自动分类技术在城镇村国土调查中的应用[J].测绘与空间地理信息,2019,42(6):102-106. [5] 韩杰, 王争. 无人机遥感国土资源快速监察系统关键技术研究[J]. 测绘通报, 2008(2):4-6. [6] CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. [7] 冯文卿, 眭海刚, 涂继辉, 等. 联合像素级和对象级分析的遥感影像变化检测[J]. 测绘学报, 2017, 46(9):1147-1155. [8] 周启鸣. 多时相遥感影像变化检测综述[J]. 地理信息世界, 2011, 9(2):28-33. [9] LI X J, YANG G H. Adaptive fault-tolerant synchronization control of a class of complex dynamical networks with general input distribution matrices and actuator faults[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3):559-569. [10] HAN X P, ZHONG Y F, ZHAO B, et al. Scene classifica-tion based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery[J]. International Journal of Remote Sensing, 2016, 38(2):514-536. [11] MAGGIORI E,TARABALKA Y, CHARPIAT G, et al. Fully convolutional neural networks for remote sensing image classification[C]//IEEE International Geoscience and Remote Sensing Symposium. Beijing:IEEE, 2016. [12] ZHANG Y, ZHANG E, CHEN W J. Deep neural network for halftone image classification based on sparse auto-encoder[J]. Engineering Applications of Artificial Intelligence, 2016, 50:245-255. [13] MOU L C, BRUZZONE L, ZHU X X. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(2):924-935. [14] ZHANG M Y, XU G L, CHEN K, et al. Triplet-based semantic relation learning for aerial remote sensing image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):266-270. [15] LIU R C, CHENG Z H, ZHANG L L, et al. Remote sensing image change detection based on information transmission and attention mechanism[J]. IEEE Access, 2019, 7:156349-156359. [16] GONG M G, ZHAO J J, LIU J, et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 27(1):125-138. [17] ZHAN Y, FU K, YAN M L, et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1845-1849. [18] HUGHES L H, SCHMITT M, MOU L C, et al. Identifying corresponding patches in SAR and optical images with a pseudo-siamese cnn[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(5):784-788. |