[1] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. [2] 姜如波. 基于三维激光扫描技术的建筑物模型重建[J]. 测绘通报, 2013(S1):80-83. [3] 宋宏. 地面三维激光扫描测量技术及其应用分析[J]. 测绘技术装备, 2008, 10(2):40-43. [4] 宇超群, 门葆红, 王鑫. 海量点云数据分布式并行处理技术综述[J]. 信息工程大学学报, 2018, 19(5):611-615. [5] BEDKOWSKI J, BRATUS' R, PROCHASKA M, et al. Use of parallel computing in mass processing of laser data[J]. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 2015, 27:45-59. [6] CONNOR M, KUMAR P. Parallel construction of k-Nearest neighbor graphs for point clouds[C]//Proceedings of the Eurographics/IEEE VGTC Workshop on Volume Graphics.[S.l.]:IEEE, 2008:25-31. [7] TAMAKI T, ABE M, RAYTCHEV B, et al. Softassign and EM-ICP on GPU[C]//Proceedings of the First International Conference on Networking and Computing.[S.l.]:IEEE, 2010:179-183. [8] 荆锐, 赵旦谱, 台宪青. 基于GPU的实时三维点云数据配准研究[J]. 计算机工程, 2012, 38(23):198-202. [9] 孙晓鹏, 颜士新. 一种新的点云并行Softassign配准算法:中国, CN104463826A[P]. 2015-03-25. [10] 刘忠建.基于OpenCL的ICP点云并行配准算法[J]. 计算机应用与软件, 2016, 33(11):185-187. [11] 贾志成, 张希晋, 陈雷, 等. 基于并行粒子群优化的三维点云配准算法[J]. 电视技术, 2016, 40(1):36-41. [12] BŁASZCZAK-BAK W, JANOWSKI A, SROKOSZ P. High performance filtering for big datasets from Airborne Laser Scanning with CUDA technology[J]. Survey Review, 2018, 50(360):262-269. [13] 郑汉之. 基于并行计算的LiDAR数据滤波方法研究[D]. 成都:西南交通大学, 2011. [14] HU X Y, LI X K, ZHANG Y J. Fast filtering of LiDAR point cloud in urban areas based on scan line segmentation and GPU acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):308-312. [15] 王宗跃, 马洪超, 徐宏根, 等. 多核CPU的海量点云并行kNN算法[J]. 测绘科学技术学报, 2010, 27(1):46-49. [16] GVNTHER C, KANZOK T, LINSEN L, et al. A GPGPU-based pipeline for accelerated rendering of point clouds[J]. Journal of WSCG, 2013, 21:153-162. [17] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. |